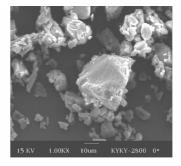
文章编号: 1006-9941(2007)03-0295-02

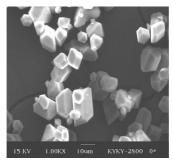
Properties of Insensitive Octogen

XU Rui-juan, KANG Bin, HUANG Hui, JIANG Yan, Li Jin-shan

(Institute of Chemical Materials, CAEP Minner) XU Rui-juan, KANG Bin, HUANG Hui, JIANG Yan, LI Jin-shan


Crystal quality and morphology can greatly influence the sensitivity and other properties of energetic crystals. Researches show improving crystal quality of RDX/HMX can reduce their sensitivities. So we prepared a kind of insensitive Beta-octogen fine particle (FD-HMX) by a special crystallization process. In this paper, the crystal qualities and properties of FD-HMX were characterized by scanning electron microscope (SEM), laser light scattering, density gradient technique, differential scanning calorimetry (DSC), impact sensitivity test and gap test. Meanwhile FD-HMX was compared with reference commercial grade HMX.

The results show that FD-HMX is much regular and very smooth (Figure 1). It is very transparent and nearly no internal defects as shown in the optical images in a fluid of matching refractive index (Figure 2). The purity of FD-HMX is 99.6% $\pm 0.5\%$ measured by high performance liquid chromatography (HPLC), and the mean particle size is 14 to 20 microns with narrow size distribution and the particle density different batches FD-HMX 1.9012 - 1.9020 g · cm⁻³ which shown in Table 1. And DSC curve of FD-HMX shows that there are two main thermal effects: solid-phase transition and decomposition. FD-HMX decomposition temperature is same as that of commercial grade HMX, while the solid-phase transition temperature is 202.33 °C, which is higher than 196.31 °C of commercial HMX. So it can be concluded that thermal property of FD-HMX is better than that of commercial HMX.


At the final of the experiment, the sensitivities of FD-HMX were measured by GJB772A - 97 standard test methods of method 601. 1 Initiation Probability Test, method 601. 2 Drop - height Test and method 605. 1 GAP

Received Date: 2007-02-07; Revised Date: 2007-04-29 Foundation Item: The Foundation of CAEP 2004Z0503 and 20060538 Biography: XU Rui-juan (1973 -), female, assistant research fellow, research field: energetic materials. e-mail: xuruijuan_xu@ 163. com

Test. The results (Table 2) indicate FD-HMX has greater drop heights of 72.2 cm with 2 kg dropping weight and lower initiation probabilities of 24% with 10 kg dropping weight than 16.8 cm and 88% of commercial grade HMX. The aluminium gap thickness of PBX based on FD-HMX is 15 mm, which reduces 2 mm comparing with commercial HMX.

(a) commercial HMX

(b) insensitive HMX(FD-HMX)

SEM photographs of two HMX particles

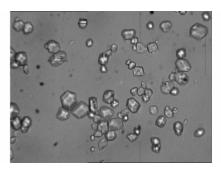


Fig. 2 Optical microscopy of FD-HMX in a fluid of matching refractive index

Table 1 Particle size and density of two HMX particles

		different batches FD-HMX						commercial HMX
		1	2	3	6	7	8	commercial rima
	size distribution	4 - 40	4 - 40	4 - 40	4 - 40	4 - 40	4 - 40	1 - 100
particle size/μm	d_{50}	14	13	18	15	16	17	19
	d_{90}	23	21	36	33	33	29	62
particle	density	1.9012	1.9013	1.9011	1.9008	1.9012	1.9018	1.8979
density	distribution	~	~	~~*	,\\\\~	~	~	~
/g • cm -3	mean	1.9020	1.9018	1.9017	1.9015	1.9019	1.9022	1.8994
	density (± 0.0005)	1.9018	1.9015	1.9014	1.9012	1.9018	1.9020	1.8994

Note: d_{50} is the particle size of 50% of total volume, d_{90} is the particle size of 90% of total volume.

Table 2 Sensitivities of two HMX particles

	commercial HMX	FD-HMX	remarks
explosive probability 0.95 (Pi,Pu)	88 (0.69,0.98)	32 (0.15,0.54) batch 1 24 (0.09,0.45) batch 2	sample 50 mg hammer 10 kg drop 25 cm
drop height H_{50}/cm	16.8 ± 0.1	72.2 ± 0.1 batch 1 * 46 ± 0.1 batch 2	sample 35 mg hammer 2 kg * hammer 5 kg
gap thickness/mm	17.0 ± 0.5	15.0 ± 0.5	aluminium gap ₱20 mm charge HMX/binder 88/12

Note: 0.95 (Pi,Pu) is confidence interval at 0.95 confidence level.

Key words: analytical chemistry; insensitive HMX; crystal quality; sensitivity

CLC number: 065; TJ55

(上接294页)

In conclusion, a liquid smoke composition which can effectively attenuate IR radiation in 3 – 5 μm and 8 – 14 μm bands is developed. Chamber test results show that the developed composition can effectively attenuate IR radiation. The transmittance of formed smoke is 11.7% in 3 – 5 μm bands and 3.9% in 8 – 14 μm bandsrespectively. It can also totally obscure IR thermal imaging system as long as 30 s.

Key words: pyrotechnic; liquid; infrared countermeasure; smoke composition; smokescreen

CLC number: TQ567.5

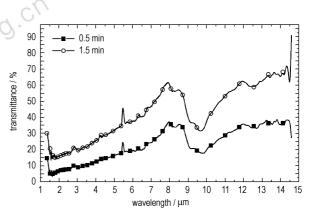


Fig. 1 Curves of IR spectrum transmittance at 0.5 min and 1.5 min