Vol. 15, No. 4 August, 2007

文章编号: 1006-9941(2007)04-0324-05

含 CL-20 的 NEPE 推进剂的燃烧性能 丁 黎, 赵凤起, 李上文, 胥会祥, 李勇宏, 仪建华 (西安近伊和世刊中)

摘要:以CL-20、AP、AI 粉和燃烧催化剂逐项添加的方式设计了递进配方[NB(PEG/NG/N-100/C,),NB/CL-20,NB/ CL-20/AP, NB/CL-20/AP/AI, NB/CL-20/AP/AI/Ct],研究了含CL-20的 NEPE 推进剂的燃速特性及 CL-20、AP、AI 粉和燃烧 催化剂对推进剂燃烧性能的影响,并与含 RDX 的 NEPE 推进剂的燃烧性能进行了比较。实验结果表明: CL-20 取代 RDX-NEPE 推进剂中的 RDX 可使推进剂燃速大幅提高,但含 CL-20 的 NEPE 推进剂的压力指数高于含 RDX 的 NEPE 推进剂,且难以降低;AP质量百分含量为70%的 NEPE 推进剂 NAP的燃速在4~10 MPa 范围内呈现一平台。将 AP 加入到含 RDX 的 NEPE 推进剂中和含 CL-20 的 NEPE 推进剂中能改善推进剂的氧系数,提高燃速,降低压力指数;高 燃烧热的 Al 粉部分取代 CL-20, 在提高含 CL-20 的 NEPE 推进剂的燃速上, 具有与CL-20相同的效果; 催化剂 PbCO, 与 Pb(NTO), · H,O 降低了含 CL-20 的 NEPE 推进剂的压力指数。

关键词: 物理化学; CL-20; NEPE 推进剂; 燃速; 压力指数

中图分类号: V512; TJ5

文献标识码: A

1 引 言

能量作为固体推进剂综合性能中最为重要的指 标[1],围绕这一目标,固体推进剂先后经历了双基推 进剂、复合推进剂、改性双基推进剂到复合改性双基推 进剂等性能各异体系[2]的发展历程。硝酸酯增塑的 聚醚推进剂 (Nitrate Ester Plasticized Polyether propellant, 简称 NEPE 推进剂) 是美国上世纪 70 年代末、80 年代初发展起来的新一代固体推进剂[3],这种推进剂 综合了双基推进剂和复合推进剂的优点,是目前能量 性能和力学性能优异的新型推进剂,代表着高能固体 推进剂的发展方向。新型高能量密度材料(HEDM)的 出现和发展为进一步提高 NEPE 推进剂的能量性能提 供了有效途径。六硝基六氮杂异伍兹烷(HNIW,CL-20)是一种高密度多环硝胺立体笼状化合物[4],是迄 今为止密度和能量最高的单质炸药,将 CL-20 引入 NEPE 推进剂对提高推进剂能量是一个极大的推动, 已成为固体推进剂的研究热点之一。

本研究选用较为成熟的 NEPE 推进剂配方作为含 CL-20 的高能 NEPE 推进剂基础配方,以主要组分逐渐 添加的方式设计递进配方,研究 CL-20、AP、AI 粉和燃烧 催化剂对推进剂燃烧性能的影响。为了更充分地阐明 CL-20 对于推进剂燃速的影响,设计了含 RDX 的 NEPE 递进配方以便于比较。与普通双基推进剂使用的燃烧

催化剂相比,NEPE 推进剂使用的燃烧催化剂的选择受 到很大的限制[5],只有对交联固化反应基本无影响的铅、 铜盐才能作为含 CL-20 的高能 NEPE 推进剂燃烧催化剂 的组分。本文在以往 NEPE 推进剂研究成果的基础^[5,6] 上,筛选出对交联固化反应影响较小的两种铅盐进行试 验,研究了两种燃烧催化剂对推进剂燃烧性能的作用。

2 试验部分

2.1 主要原材料

PEG, $M_n = 6000$ (进口分装),上海浦东高南化工 厂; CL-20(ε型), 北京理工大学; RDX, E/H 级, 兰 州白银银光化学材料厂; C,,太原化工厂; NG,N-100, [NCO] = 20.1%; PbCO₃ (Ct1); $[Pb(NTO), \cdot H, O]$ (Ct2); Al 粉, 盖州市金属粉末厂; AP, 大连北方氯 酸钾厂,几种含能材料的能量特性见表 1。

表 1 几种含能材料的能量特性 Table 1 The energy characteristics of energetic materials used in this work

	formulation	Φ	ρ /g • cm -	ΔH 3 kJ • mol $^{-1}$	$Q_{\rm c}$ /kJ · kg $^{-1}$	$I_{\rm sp}$ /N·s·kg ⁻¹
CL-20	$C_6 H_6 N_{12} O_{12}$	0.800	1.98	415.50	6645.60	2756.5
RDX	$C_3 H_6 N_6 O_6$	0.667	1.81	71.50	6198.09	2678.3
HMX	${ m C_4H_8N_8O_8}$	0.667	1.90	74.80	6174.29	2673.3
AP	$\mathrm{NH_4ClO_4}$	2.250	1.95	- 294.14	1645.46	1597.0
Al	Al	0	2.70	0	31750.00	2600.0

2.2 燃速测试

推进剂燃速采用靶线法在充氮调压式燃速仪中测

收稿日期: 2007-06-08; 修回日期: 2007-07-04

作者简介:丁黎(1971-),硕士,从事含能材料热分析研究。

e-mail: dingli66@ sina.com

定,试样在测试前用聚乙烯醇包覆其侧面,测试压力范 围为2~12 MPa。

2.3 试样制备

2.3.1 推进剂配方

选用的 NEPE 推进剂基础配方见表 2,含 CL-20 的 NEPE 推进剂和含 RDX 的 NEPE 推进剂配方见表 3。

2.3.2 试样制备

推进剂样品采用配浆浇铸工艺,将预先配制好的 液料和其余各组分在5立升立式混合机(德国)内混 合1 h 左右,真空浇铸,50 ℃固化7 d,退模。方坯切成 5 mm × 5 mm × 100 mm 的药条测试燃速》

试验结果及讨论

3.1 分别含 RDX 和 CL-20 的 NEPE 推进剂配方的 燃速特性

靶线法测得的含 RDX 和含 CL-20 的 NEPE 推进 剂配方的燃速结果分别见表 4 和表 5。

3.2 CL-20 对燃速的影响

NC1 与 NAP 和 NR1 的燃速-压力曲线见图 1。对 比 NR1 与 NC1 可知, 当 NR1 中 70% 的 RDX 被 CL-20 取代后得到 NC1,该配方燃速明显提高,燃速增加幅度 随压力的增加而显著增加,同时压力指数也增加,这是 应用高能量高密度的 CL-20 结果。NR1 中 70% 的 RDX 被 AP 取代后 NAP 的燃速在 4~10 MPa 范围内出现了 一个平台,表明 AP 在 NEPE 推进剂中单独使用压力指 数不高,加入到多组分 NEPE 推进剂有利于降低压力指

数,下面将讨论的AP对燃速的影响也证实了这一点。

高硝胺化合物(HMX或 RDX)含量推进剂的高压 燃速调节是硝胺系固体推进剂燃烧性能调节的公认难 题。其主要原因在于硝胺化合物分解与燃烧表面放热 反应不同步,它在燃烧表面上主要起惰性填充作用,降 低推进剂燃速。而高压下燃烧表面放热和热反馈作用 增强,加速了硝胺化合物的分解作用,使推进剂的高压

表 2 NEPE 推进剂的配方 (质量分数)

Table 2 The formulation of NEPE propellant (in mass %)

PEG	NG	HMX	AP	Al	N-100	stabilizer
~ 6	~ 18	~ 47	~ 10	~ 18	1	2

表 3 含 CL-20 的 NEPE 推进剂及含 RDX 的 NEPE 推进剂配方(质量分数)

Table 3 The formulation of NEPE propellant containing CL-20 and NEPE propellant containing RDX (in mass %)

propella ID	nt PEG	NG	CL-20	AP	Al	N-100	C_2	Ct1 (added)	Ct2 (added)
NB	23.3	71.7	-	-	-	3.3	1.7	-	_
NC1	7	21.5	70	-	-	1	0.5	-	-
NC2	7	21.5	60	10	_	1	0.5	-	_
NC3	7	21.5	42	10	18	1	0.5	-	-
NC4	7	21.5	42	10	18	1	0.5	3	-
NC5	7	21.5	42	10	18	1	0.5	-	3
NR1	7	21.5	70	-	-	1	0.5	-	_
NR2	7	21.5	60	10	-	1	0.5	-	-
NR3	7	21.5	42	10	18	1	0.5	-	-
NR4	7	21.5	42	10	18	1	0.5	3	-
NR5	7	21.5	42	10	18	1	0.5	-	3
NAP	7	21.5	-	70	-	1	0.5	-	-

表 4 含 RDX 的 NEPE 推进剂配方的燃速

Table 4 The burning rate of formulation of NEPE propellant containing RDX

propellant		<i>u</i> /(mm	\cdot s $^{-1}$) at d	lifferent press	ure/MPa	pressure exponent					
ID	2	4	6	8	10	12	n ₍₂₋₄₎	n (4-6)	n ₍₆₋₈₎	n ₍₈₋₁₀₎	n ₍₂₋₁₂
NR1	2.13	3.99	5.85	7.61	9.58	11.30	0.91	0.94	0.91	1.03	0.93
NR2	3.21	5.37	7.33	9.66	11.99	13.87	0.74	0.77	0.96	0.97	0.82
NR3	3.74	5.82	8.22	11.45	14.68	18.90	0.64	0.85	1.15	1.11	0.90
NR4	4.41	6.47	8.75	10.94	13.28	16.29	0.55	0.74	0.78	0.87	0.72
NR5	3.97	6.30	8.60	11.25	13.95	16.79	0.67	0.77	0.93	0.95	0.80
1.	1.6UG		큠	長5 含CI	L-20 的 NE	PE 推进剂	的燃速				
MN.	大米	able 5 Th	e burning	g rate of fo	rmulation	of NEPE p	oropellant c	ontaining	CL-20		
propellant	XXX	u/(mm		lifferent press		or nere p	поренані С		essure expon	nent	_

表 5 含 CL-20 的 NEPE 推进剂的燃速

Table 5 The burning rate of formulation of NEPE propellant containing CL-20

propellant		<i>u</i> /(mm	\cdot s ⁻¹) at d	ifferent press	ure/MPa		pressure exponent				
ID T	2	4	6	8	10	12	n ₍₂₋₄₎	n ₍₄₋₆₎	n ₍₆₋₈₎	n ₍₈₋₁₀₎	n ₍₂₋₁₂₎
NC1	4.46	7.41	10.20	13.89	17.34	21.45	0.73	0.79	1.07	0.99	0.87
NC2	6.10	10.03	13.12	17.20	21.93	25.81	0.72	0.66	0.94	1.09	0.80
NC3	5.54	8.87	13.11	17.00	21.74	25.19	0.68	0.96	0.90	1.10	0.86
NC4	6.90	11.66	13.70	17.05	21.12	26.86	0.76	0.40	0.76	0.96	0.72
NC5	6.58	10.42	15.59	18.07	24.45	27.32	0.66	0.99	0.51	1.36	0.81
NAP	6.25	8.31	8.86	8.96	9.24	10.48	0.41	0.16	0.04	0.138	0.25

燃速降低程度减小,引起压力指数升高。NR1 的燃速 试验结果也与上述分析一致。虽然 CL-20 受热分解时 为固相直接分解,不同于 HMX 或 RDX 分解时有一个 熔融吸热的过程,但 CL-20 分解后释放出具有强氧化 性的氮氧化物如 NO。和 CH₂O,其浓度强烈依赖压力, 压力升高时,这些气相产物被抑制在凝聚相中,从而增 强了它们对推进剂的二次分解作用,使分解反应产生 了明显的自催化,分解放热量增大,再者是它们自身之 间的氧化还原反应也因压力的提高而大大增强,快速 的热积累以及压力下的热反馈使试样自加热增强,CL-20 分解的这种特性使得 CL-20 含量为 70%的 NC1 分解 放热量 ΔH_a 大幅增加,高压下燃烧表面放热和热反馈 作用急剧增强,这可能是压力指数高于 NR1 的原因。

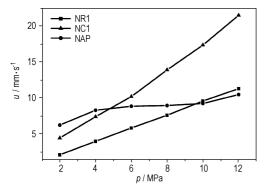


图 1 NC1、NAP和NR1三种推进剂的燃速-压力曲线 Fig. 1 u-p curves for propellants NC1, NAP and NR1

3.3 AP 对燃速的影响

AP 因其分子结构中含氧量高,与其他组分的相容 性好等优点而成为固体推进剂中广泛使用的氧化剂。 用 AP 替代 NC1 中 10% 的 CL-20 后得到 NC2,由图 2 可 知,与 NC1 相比, NC2 在 2~12 MPa 的压力范围内燃速 明显提高,在 2 MPa 时, NC2 的燃速是 NC1 的 1.37 倍, 增幅为 1.64 mm·s⁻¹,在 12 MPa NC2 的燃速是 NC1 的 1.20 倍,增幅为 4.36 mm·s⁻¹,即随着压力的升高,AP 提高了该类推进剂燃速增加的幅度。虽然 AP 的燃烧 热值仅为 1645.46 kJ·kg⁻¹(见表 1),远低于 CL-20,但 其氧系数为2.25,加入到推进剂中明显改善了推进剂的 氧平衡,从而提高了燃速,并且压力指数略有降低。

图 3 为含 RDX 的 NEPE 递进配方的燃速-压力曲 线,对比图 2 和图 3 中 NC2 与 NR2 的燃速-压力曲线 可以看出,同样都含有 10% AP 的 NC2 与 NR2 比较, 燃速的增幅明显的大后者,而且随着压力升高,增幅加 大。但是,其增高率,即相对增加量却相反,如在 2 MPa下 NR2 较 NR1 的燃速提高 1.5 倍,而 NC2 较

NC1 的燃速只提高 1.37 倍,12 MPa 下 NR2 较 NR1 的 燃速提高 1.23 倍, NC2 较 NC1 的燃速也只提高 1.20 倍,该增高率也随压力而下降,这一结果表明,AP对于 含 RDX 的 NEPE 推进剂的增速效果大于含 CL-20 的 配方,并且这种作用在低压下较为明显,这是由于 CL-20 的氧系数高于 RDX, AP 加入到推进剂中, 相比之下 更显著地改善了含 RDX 的 NEPE 配方的氧平衡,另一 方面,由于低压下 RDX 分解时的熔融吸热对降低燃速 作用明显, AP 取代 RDX 后, RDX 含量的减少会使这 种吸热作用减弱,因此燃速增加较明显。

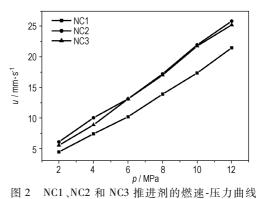


Fig. 2 u-p curves for propellants NC1, NC2 and NC3

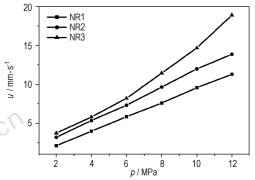


图 3 NR1、NR2 和 NR3 推进剂的燃速-压力曲线 Fig. 3 u-p curves for propellants NR1, NR2 and NR3

3.4 金属燃料 Al 粉对燃速的影响

用 18%的 Al 粉取代 NC2 中 CL-20 和 NR2 中的 RDX,分别得到 NC3 和 NR3。由图 2 和图 3 可以看 出, NC3 的燃速与 NC2 相比没有明显的改变,但 NR3 的燃速与 NR2 相比却有较大幅度的提高,而且增大的 幅度还随着压力的提高而提高。前者说明 18% 的 Al 粉与等量的 CL-20 在 NEPE 配方中对燃速的影响相 当,这是由于 Al 粉具有很高的燃烧热(见表 1),使燃 速增加效果与高能量密度的 CL-20 相当。也正因为如 此, Al 粉取代较低能量的 RDX 就能够提高 NR3 的燃 速,同时燃速的增幅随压力而增加,提高了压力指数。

3.5 催化剂对燃速的影响

NR4 与 NR5 是分别含有催化剂 Ct1 和 Ct2 的配方,从图 4 可以看出,与 NR3 相比,7 MPa 之前 Ct1 与 Ct2 均 使推 进 剂 的 燃 速 升 高,但 增 加 幅 度 最 多 不 超 过 $0.7~{\rm mm \cdot s^{-1}}$, Ct1 对于燃速的提高作用大于 Ct2,7 MPa 之后两种催化剂均降低了推进剂的燃速,Ct1 使推进剂燃速降低 2. 61 ${\rm mm \cdot s^{-1}}$, Ct2 使 推 进 剂燃速降低 2.11 ${\rm mm \cdot s^{-1}}$, Ct1 的降速作用在随压力升高更为明显。从 $2 \sim 12$ MPa 的压力范围来看,NR4 的压力指数 n 为 0.72, NR5 的压力指数 n 为 0.80, NR5 的压力指数大于 NR4,即催化剂 Ct1 对推进剂压力指数的调节作用优于 Ct2。

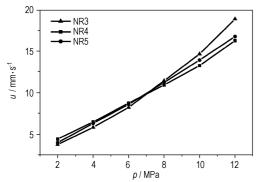


图 4 NR3、NR4 和 NR5 推进剂的燃速-压力曲线

Fig. 4 u-p curves for propellants NR3, NR4 and NR5

图 5 给出了分别含催化剂 Ct1 与 Ct2 的 NC4 与 NC5 的燃速-压力曲线,从图中可以看出,与 NC3 相比,这两种催化剂对含 CL-20 的 NEPE 推进剂燃速的影响不同于其对含 RDX 的 NEPE 推进剂的影响。Ct1 在 7 MPa 之前使 NC4 的燃速增加,7 MPa之后 NC4 与 NC3 的燃速基本接近,即 Ct1 对 NC4 在低压下的作用与 NR4 相仿; Ct2 在整个压力范围内都使 NC5 燃速提高,只是在 8 MPa 和 12 MPa 对燃速的提高较小,Ct2 对 NC5 在低压下的作用亦与 NR5 相仿,但高压下则相反。两种催化剂对含 CL-20 的 NEPE 推进剂压力指数的降低不及对含 RDX 的 NEPE 推进剂。

有资料表明^[6~10],NTO($C_2H_2N_4O_3$)是一种低感度 炸药,它与金属离子(Pb^{2+} 、 Cu^{2+} 、 Ba^{2+} 等)配位形成 的 NTO 盐受热按下式分解:

$$Pb(NTO)_{2} \cdot H_{2}O \xrightarrow{192-209 \text{ } C} Pb(NTO)_{3} \xrightarrow{209-240 \text{ } C} Pb(NTO)_{3} \xrightarrow{-NO_{2}} Pb(OCN)_{2} + PbCO_{3} \xrightarrow{322-406 \text{ } C} PbO$$

分解会释放大量能量,并生成多种活性物质。Ct2 在 240~406 $^{\circ}$ 生成活性催化物质 PbCO₃ 和 PbO 等,且 Ct2 在硝酸酯和硝胺化合物集中分解、放热的温度

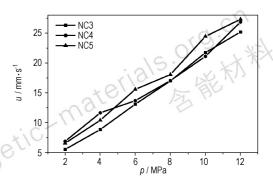


图 5 NC3、NC4 和 NC5 推进剂的燃速-压力曲线 Fig. 5 *u-p* curves for propellants NC3, NC4 and NC5

范围内(200~260 °C)发生分解,脱硝(—NO,)产生初 次反应阶段的强氧化剂 NO2,提高该区的氧化性物质 含量,这均有利于降低"嘶嘶区"醛类/NO2的比例,加 速"嘶嘶区"的放热反应速度,增加燃烧表面放热量, 提高推进剂燃速,在低压下出现明显的"增速"效应。 当压力大于 7 MPa 时, Ct2 使 NR5 燃速有所降低,这可 能是由于随着压力的增大,燃烧过程中气相反应(如 CO、H₂ 和 NO 进行反应)作用增强,改变了铅化合物 (Pb 和 PbO 等)的催化对象,并且 Ct2 的分解产物 (H,O 和 HCN 等)也可能对推进剂的高压燃速有一定 抑制作用;对于配方 NC5,燃速仍然较高,这可能与 CL-20 本身的结构和压力对 CL-20 的放热分解的影响 有关。CL-20的分子中含有6个N-NO2,同Ct2一起 受热分解时脱硝(-NO₂)产生初次反应阶段的强氧化 剂 NO,,一方面降低了"嘶嘶区"醛类/NO,的比例,加 速"嘶嘶区"的放热反应速度,另一方面强氧化剂 NO, 对 CL-20 的分解具有强烈的自催化和自加热效应,且 随着压力增大,NO₂ 的扩散受到抑制,自催化和自加热 效应增强,放热量增加使得燃速提高。此外,含 CL-20 的 NEPE 配方在低压下(2 MPa)的燃烧表面温度在 550~700 ℃, 高于 Pb(NTO), · H₂O 分解生成 PbO 等 的温度,这与铅化合物主要作用在凝聚相的观点一致。

4 结 论

- (1) 含 CL-20 的 NEPE 推进剂燃速和压力指数高于含 RDX 的 NEPE 推进剂,且难以调节。
- (2) 含 AP 70% 的推进剂 NAP 的燃速在 4~10 MPa范围内出现了一个平台,表明 AP 在该类推进剂中单独使用压力指数相当好。
- (3) AP 加入到含 RDX 的 NEPE 推进剂和含 CL-20的 NEPE 推进剂中改善了配方的氧平衡,提高了燃速,并且有利于降低压力指数。

- (4) 高燃烧热的 Al 粉部分取代 CL-20,在提高 CL-20-NEPE的燃速上,具有与 CL-20 相同的效果。Al 粉部分取代 RDX 能更大提高含 RDX-NEPE 推进剂的燃速。
- (5) 催化剂 Ct1 与 Ct2 降低了含 RDX 的 NEPE 推进剂的压力指数。催化剂对含 CL-20 的 NEPE 推进剂燃速的影响不同于其对含 RDX 的 NEPE 推进剂的影响,与空白(无 Ct)配方相比,Ct1 在 7 MPa 之前使推进剂燃速增加,7 MPa 之后变化不大,Ct2 在整个压力范围内都使推进剂燃速提高,压力指数略有降低。

参考文献:

(1): 28 - 34.

- [1] 郑剑, 侯林法, 杨仲雄, 等. 高能固体推进剂技术回顾与展望[J]. 固体火箭技术, 2001,24(1): 28-34.

 ZHENG Jian, HOU Lin-fa, YANG Zhong-xiong. The Progress and Prospects of High[J]. Journal of Solid Rocket Technology, 2001,24
- [2] 中国北方化学工业总公司编. 火炸药理论与实践[M]. 北京: 中国北方化学工业总公司,2001.
 - China North Chemical Industry Co. Theory and Practices of explosive and propellant [M]. Beijing: CNIC Co. Press, 2001.
- [3] 谭惠民. 高能推进剂的发展方向-NEPE 推进剂[J]. 北京理工大学学报, 1992, 12(S1): 1-7.
 - TAN Hui-min. Nitnate Ester plasticized polyether propellant: A novel development in soh'd propellant [J]. *Journal of Beijing Institute of Technology*, 1992,12(S1): 1-7.
- [4] 李一苇. 低温不脆变的高能推进剂"NEPE" [J]. 国外兵器技术, 1984. LI Yi-wei. High energy NEPE propellant without fragility at low temperature[J]. Foreign weapon technology, 1984.
- [5] 冯增国, 侯竹林, 王恩普. 硝胺推进剂燃烧规律及其调节技术 [J]. 北京理工大学学报,1995,15(6): 32-38.
 - FENG Zeng-guo, HOU Zhu-lin, WANG En-pu. Combustion behaviors and adjustment techniques of nitramine propellants. *Journal of Beijing Institute of Technology*, 1995, 15(6): 32 38.

- [6] 樊学忠,张伟,李吉祯,等. 铅盐对无烟 N EPE 推进剂燃烧性能的影响[J]. 火炸药学报,2005,28(1):9-11.
 - FAN Xue-zhong, ZHANG Wei, LI Ji-zhen, et al. Effects of types of lead compounds on the combustion characteristics of smokeless NEPE propellants [J]. Chinese Journal of Explosives & Propellants, 2005:28 (1):9-11.
- [7] 张伟, 李吉祯, 孙育坤, 等. 铜盐和碳黑对微烟 NEPE 推进剂燃烧性能的影响[J]. 火炸药学报,28(3): 27-29.
 - ZHANG Wei, LI Ji zhen, SUN Yu kun, et al. Effect of copper compounds and carbon black on the combustion characteristics of smokeless NEPE propellants[J]. Chinese Journal of Explosives & Propellants, 28(3): 27 29.
- [8] 美大林, 钟雷, 陈深坤. 含能无铅燃烧催化剂 Ba(NTO)·3H₂O性能研究[J]. 固体火箭技术,1999,22(2): 22-26.

 GUAN Da-lin, ZHONG Lei, CHEN Shen-kun. Investigation on the property of an energetic leadless combustion catalyst Ba(NTO)·3H₂O

 [J]. Journal of Solid Rocket Technology, 1999, 22(2): 22-26.
- [9] 董海山,胡荣祖,姚朴,等. 含能材料热谱集[M]. 北京:国防工业出版社,2002.

 DONG Hai-shan, HU Rong-zu, YAO Pu, et al. Collection of thermospectrum of energetic materials [M]. Beijing: National Defence Industry Press, 2002.
- [10] Kubota N, Ohlemiller T J, Summerfield M, et al. The mechanism of surper-rate buring of catalyzed double base propellent [R]. AD -763786,1973.
- [11] Hewkin D J, Hicks J A, Powling J, et al. The combustion of Nitric ester-Based propellents: Basllistic Modification by Lead compounds [J].
 Combustion Science and Technology, 1971,2: 307 327.
- [12] 金韶华, 王申, 松全才. 活性添加剂对双基推进剂催化作用的影响[J]. 含能材料, 2002,10(2): 91-94.

 JIN Shao-hua, WANG Shen, SONG Quan-cai. Effect of Active-additive upon the Combustion Catalysis of Double-based Propellant[J].

 Chinese Journal of Energetic Materials (Hanneng Cailiao), 2002,10 (2): 91-94.

Combustion Property of NEPE Propellant with CL-20

DING Li, ZHAO Feng-qi, Ll Shang-wen, XU Hui-xiang, Ll Yong-hong

(Xi'an Modern Chemistry Research Institute, Xi'an 710065, China)

Abstract: The effect of CL-20, AP, Al power and combustion catalyst on combustion properties (burning rate and pressure exponent) of CL-20-NEPE propellant was studied with designed formulation [NB(PEG/NG/N-100/C₂), NB/CL-20, NB/CL-20/AP, NB/CL-20/AP/Al, NB/CL-20/AP/Al/Ct], in which the ingredients are added one by one, and compared with that of RDX-NEPE propellant. The results show that the substitution of CL-20 for RDX in RDX-NEPE propellant increases the burning rate, but the pressure exponent of CL-20-NEPE propellant which is difficult to reduce is larger than that of RDX(HMX)-NEPE propellant. The burning rate of AP-NEPE propellant containing 70% AP reveals a plateau at 4 – 10MPa. Adding AP into CL-20(RDX)-NEPE propellant increases the oxygen coefficient and the burning rate, and decreases the pressure exponent. Addition of Al powder increases the burning rate of RDX-NEPE propellant although has little effect on that of CL-20 NEPE propellant. The pressure exponent of burning rate of CL-20-NEPE propellant is decreased by combustion catalyst PbCO, and Pb(NTO), · H₂O.

Key words: physical chemistry; CL-20; NEPE propellant; burning rate; pressure exponent