miller energy release model for aluminized explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(4): 436-440.

- [7] Swisdak M M. Explosion effects and properties: Part II. Explosion effect in water[R]. Naval Surface Weapons Center Technical Report, NSWC/NOL TR 76 - 116: 1997.
- [8] 恽寿榕,赵衡阳. 爆炸力学[M]. 北京:国防工业出版社,2005: 324-325.
- [9] Itoh S, Suzuki O, Nagano S, et al. Investigations on fundamental properties of underwater shock waves by high speed photography[J]. Journal of Materials Processing Technology, 1999, 85(3): 226-230.

Effects of Ratios of Aluminum to Oxygen on Shock Wave of Cylindrical Charge at Underwater Explosive Close-field

ZHAO Ji-bo, LI Jin-he, TAN Duo-wang, SUN Yong-qiang, ZHANG Guang-sheng

(Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics,

China Academy of Engineering Physics, Mianyang 621900, China)

Abstract: Three kinds of cylindrical charges based on RDX with different ratios of aluminum to oxygen were tested through underwater explosion. Attenuation law of shock wave peak pressure versus transmission distance at close-field underwater explosion was resolved by high-speed scanning. The effects of Al/O ratios on initial shock wave peak pressure and attenuation were analyzed. Results show that the initial shock wave peak pressure achieves 18.95 GPa,13.66 GPa and 8.35 GPa respectively when the Al/O ratios are 0, 0.4 and 0.7. The speed of peak pressure attenuation decreases with the increasing of aluminum content. The factors, such as the time of aluminum beginning to react and the degree of reaction, have remarkable effects on shock wave peak pressure at close-field and attenuation of peak pressure.

Key words: explosion mechanics; aluminiferous explosive; underwater explosion; ratio of aluminium to oxygen; shock wave at close-field

Dr. Manfred Held 和 Dr. Paul Wanninger 来绵讲学

报告人: Dr. Manfred Held, Dr. Paul Wanninger

时间: 2009年9月7日~11日 地点: 绵阳市绵州酒店

联系人: 高晓敏 电话: 0816 - 2485376

time	presentation	presenter
9月7日	Detonation Phenomena	Manfred Held
	Raw Materials for High Explosives (RDX,HMX,PETN,CL20,NTO,NQ,HNS,TATB)	Paul Wanninger
	Desired High Explosive Performances	Manfred Held
	High Explosive Components (Plastizisers, Binders, Curry Agents, Bonding Agents, Burning Modifier, Flame Depression Agents, Metal Powders)	Paul Wanninger
9月8日	Introduction in Production of High Explosives (Melt Cast, Cure Cast, Pressed)	Manfred Held
	More Details to the High Explosive Production Requirements	Paul Wanninger
	Sensitivity, Survivability, Initiability Tests	Manfred Held
	Test Results with PBX Charges and Warheads	Paul Wanninger
9月9日	Propellants (NG, NC, AND, Degon, AP, AN, GAP, Nitramins)	Paul Wanninger
	High Explosives Used as Ejection Charges	Manfred Held
	MIL STD1205 (Fast Cookoff, Slow Cookoff, Bullet Impact, Projectile Impact, Shaped Charge Jet Impact, SC Secondary Fragments)	Manfred Held
	Detmatimbehaviour (Detonation Velocities, Guerney Velocities, Critical Diameter, GAP Tests)	Paul Wanninger
9月10日	High Explosive Charges for Shaped Charges	Manfred Held
	Initiation Threshold by Fragments	Manfred Held
	Initiation Thresholds by Shaped Charge Jets	Manfred Held
	Dual Composition Explosives	Manfred Held
9月11日	Introduction into Corner Turning Distance	Manfred Held
	Corner Turning Distance Test Methods	Manfred Held
	Diagnostic with FXR of Detonation Events	Manfred Held
	Demilitarisation High Explosives and Propellants	Paul Wanninger