文章编号:1006-9941(2011)02-0160-05

二硝基脲的合成、表征及热力学的理论研究

杨建明,余秦伟,薛云娜,李亚妮,葛忠学,吕 剑 (西安近代化学研究所,陕西西安710065)

naterials.org.cn 経硝化F 摘 要: 二硝基脲(DNU)是环状硝胺类含能化合物的重要前体原料。以尿素为原料,经硝化反应合成了二硝基脲,并分离得到了 中间体硝基脲,优化了反应条件。在20%发烟硫酸与100%硝酸体积比为0.6/1时,一阶段温度-15℃,二阶段温度5℃,反应 50 min,二硝基脲收率可达 83.2%。采用 B3LYP 法,在 6-31 + G(d,p) 基组水平对二硝基脲的结构进行了优化,计算了其性能,获 得稳定的几何构型;经振动分析获得二硝基脲在不同温度下的热力学性质,并得到温度对热力学性能影响的关系式。结果表明: 二硝基脲存在两种稳定构型,二者能量差12.621 kJ·mol⁻¹;热能、热容和熵均随温度的升高而增大。 关键词:有机化学; 二硝基脲; 合成; 理论计算; 几何构型; 热力学性质

中图分类号: TJ55; O62

文献标识码: A

DOI: 10.3969/j.issn.1006-9941.2011.02.009

1 引 言

二硝基脲及其双环硝胺类含能化合物是一类非常 重要的高能量密度材料(HEDM)^[1],它们具有高密度 骨架结构,通常作为含能化合物的基础设计单元。如 Scheme 1 中系列硝胺类含能化合物,1,3,5-三硝基 -三氮杂环己酮-2(K-6),2,5,7,9-四硝基-2,5,7,9-四 氮杂双环[4,3,0]壬酮-8(K-56),2,4,6,8-四硝基-2, 4,6,8-四氮杂双环[3,3,0]辛二酮-3,7(TNGU)等密 度可达 1.98~2.07 g·cm⁻³, 二硝基脲(dinitrourea, DNU)的密度为1.98g・cm⁻³。

DNU 是硝酰胺的优良母体,也是 K-6 合成的关键 原料^[2]。Patrick 等^[3]以尿素为原料,在100%硝酸/ 95%浓硫酸硝化体系中,得到 DNU 收率为 39%。

收稿日期: 2010-06-07; 修回日期: 2010-07-15 基金项目: 国防"973"项目基金资助(批准号: 613740202)

作者简介:杨建明(1974-),男,博士,高级工程师,主要从事有机合成 研究。e-mail: yangjm204@163.com

Syezewski 等^[4] 采用 20% 发烟硫酸/98% 硝酸硝化体 系,以粗产品计 DNU 收率约 90%。Ⅱ'yasov 等^[5-6] 用"一锅法",经硝化反应得到了 DNU,经水解后硝酰 胺中间体再与甲醛、氨水缩合,得到二硝基五亚甲基四 胺(DPT)。尿素硝化产物取决于硝化反应机制,后者 与硝化体系紧密相关,而现有文献对不同酸浓度体系 中尿素的硝化产物规律缺乏系统研究。本实验在不同 浓度发烟硫酸/100%硝酸体系中,研究了尿素的硝化 反应过程,优化了反应条件,分离得到硝化中间体硝基 脲(mononitrourea, MNU),并通过量子化学方法,阐 明了 DNU 的几何构型及初步热力学性质。

2 实验部分

2.1 试剂与仪器

20%发烟硫酸、98%硫酸、三氟乙酸均为分析纯; 尿素、100%硝酸与氨水为工业品。

NEXUS 870 型傅立叶变换红外光谱仪,美国热电 尼高力公司; AV500 型(500 MHz) 超导核磁功能共 振仪,瑞士 BRUKER 公司。美国 TA 公司 Universal V2.6D DSC 热分析仪。

2.2 二硝基脲的合成

在温度-15~-10℃,将20%发烟硫酸加入指定 量 100% 硝酸中, 配制成混酸。 取尿素 6.0 g(0.1 mol) 分批加入混酸中,加完后在-10~-5℃搅拌反应 20 min,之后在0~5 ℃继续搅拌反应 30 min,反应液 析出白色固体,快速过滤,三氟乙酸洗涤(10 mL × 3),

滤饼在(25 ±1)℃真空干燥,得二硝基脲。

结构鉴定: ¹H NMR (acetone-d₆,500 MHz)δ: 13.30(s,2H); ¹³C NMR (acetone-d₆,500 MHz)δ: 146.4; IR (KBr, cm⁻¹): 1757,1602,1447,1312,1120。

在氮气氛中,升温速率 10 ℃・min⁻¹,DSC 结果 显示二硝基脲在 104.1 ℃剧烈分解。

3 结果与讨论

3.1 发烟硫酸、100%硝酸用量的影响

在尿素用量 6.0 g,20% 发烟硫酸用量 10 mL,反应 50 min,考察了 100% 硝酸用量对 DNU 收率的影响,结果如图 1 所示。从图 1 可以看出,当 100% 硝酸与尿素摩尔比为 2 时,DNU 收率为 61.3%。增大发烟硝酸用量,DNU 收率大幅度上升,当摩尔比增加到 3.0 时,收率为 76.2%,其摩尔比超过 3.0 时,收率反而下降,故选择摩尔比为 3/1。在尿素用量 6.0 g, 100% 硝酸与尿素用量为 3/1,改变发烟硫酸用量,反应结果见图 2。

图1 100% 硝酸用量对二硝基脲收率的影响

图 2 20% 发烟硫酸用量对二硝基脲收率的影响 Fig. 2 Effect of the amount of 20% oleum on yield of DNU

图 2 结果表明,20% 发烟硫酸与 100% 硝酸体积 比为 0.4 时,DNU 收率仅为 24.9%,其体积比为 0.6 时,DNU 收率增加到 76.7%,而后随着体积比的增 加,收率又降低。分析其原因为,当发烟硫酸用量较少 时,难以促使硝酸转化成硝酰阳离子,硝酰阳离子浓度 低,则硝化能力减弱,引起 DNU 收率降低,当发烟硫 酸用量与100%硝酸体积比超过1.0时,反应过于激 烈,容易出现喷料,导致反应难以操作。故选择20% 发烟硫酸与100%硝酸体积比为0.6,既能保证反应 原料顺利转化,又能实现操作平稳。

3.2 反应温度的影响

尿素分子为对称结构且存在两个氨基,在一定温 度下两个氮原子的硝化反应几率均等,并优先生成单 分子硝基化合物 MNU, 而 MNU 氨基上的氢被硝基取 代后,受羰基 N-硝基的强吸电效应及分子内氢键作用 影响,其分子结构中另一个氨基较难硝化,因此在尿素 硝化反应进行到一定程度时,因为硝化体系反应能力 降低,所以需提高反应温度以强化反应条件。以此为 基础,本实验设计了不同的阶段温度反应(一阶段和 二阶段),控制两阶段整个反应时间为50 min(一阶段 20 min, 二阶段 30 min), 考察了不同阶段温度对 DNU 收率的影响,结果见表1。一阶段温度-15 ℃, 二阶段温度分别为0℃和5℃,DNU收率分别为 76.0% 和 83.2%; 一阶段温度 -5 ℃, 二阶段温度为 0 ℃和5 ℃, DNU 收率分别为72.6%和74.4%。因 此在一阶段需相对低温(-15 ℃),二阶段在相对高 温(5 ℃)条件下,能得到产率较高(83.2%和74.4%) 的 DNU,该结果与条件设计相吻合。

表1 不同反应温度下二硝基脲收率 Table 1 Yield of DNU at various temperatures

first stage temperature/℃	-15	-15	-5	-5
second stage temperature/℃	0	5	0	5
yields of DNU/%	76.0	83.2	72.6	74.4

Note: Reaction condition: urea 6.0 g, HNO_3 /urea = 3.0/1, oleum/ HNO₃ = 0.6.

3.3 硝化反应过程

配制不同比例的发烟硫酸代替上述 20%发烟硫酸 予以反应,保持发烟硫酸与 100% 硝酸体积比为 0.6,结 果见表 2。结果显示,当混酸中不加入发烟硫酸,主要 生成 MNU,其分离收率为 73.0%,当 H₂SO₄/20% 发烟 硫酸为 1/1 时,其分离收率为 20.1%。在 H₂SO₄/20% 发烟硫酸为 1/2 和 1/3 时,将反应滤液倒入冰水中,未 分离得到 MNU(表 2 例 3,4,5 所示)。这是由于 MNU 遇水易发生分解反应,生成硝酰胺与异氰酸,后者经重 排、水解释放出 NH₃和 CO₂^[7]。

N

为了对尿素硝化反应过程进行深入研究,将反应 30 min 的反应液进行原位核磁碳谱表征。核磁碳谱 结果显示,反应产物存在两种不同的碳,对应两种不同 碳化学环境,其位移值分别为 δ =146.4 和 δ =156.0, 定量积分百分比为 80.0% 和 20.0%,与 DNU 和 MNU 相对应。同时原位核磁碳谱中不存在其它碳化 学位移(除溶剂 acetone-d₆),表明尿素硝化反应过程 分两步进行,第一步先生成 MNU,其经进一步硝化后 生成 DNU,反应过程为:

$$\underset{H_2N}{\overset{O}{\longleftarrow}} \underset{NH_2}{\overset{O}{\longleftarrow}} \underset{H_2N}{\overset{O}{\longleftarrow}} \underset{H}{\overset{N}{\longleftarrow}} \underset{NO_2}{\overset{O}{\longrightarrow}} \underset{NO_2}{\overset{O}{\longrightarrow}} \underset{H}{\overset{O}{\longleftarrow}} \underset{NO_2}{\overset{O}{\longrightarrow}} \underset{NO_2}{\overset{O}{\longrightarrow}} \underset{H}{\overset{O}{\longrightarrow}} \underset{NO_2}{\overset{O}{\longrightarrow}} \underset{NO_2}{\overset{O}{\overset{O}{\longrightarrow}} \underset{NO_2}{\overset{O}{\overset}} \underset{NO_2}$$

将分离得到的 MNU 加入新配制的发烟硫酸/ 100%硝酸中,采用与实验部分 DNU 合成相同的操作 条件,均得到 DNU,其收率 78.9%(表 2 例 6),进一 步说明 MNU 为反应中间体。

表2 不同浓度发烟硫酸对尿素硝化反应的影响

 Table 2
 Effect of different oleum concentrations on nitrification of urea

No. materials	various oleum	yield of DNU/%	yield of MNU/%
1 ¹⁾ urea	H_2SO_4	12.0	73.0
2^{2} urea	$H_2 SO_4 / 20\%$ oleum = 1 / 1	55.0	20.1
3 ²⁾ urea	$H_2 SO_4 / 20\%$ oleum = 1 / 2	78.3	- ³)
4 ²⁾ urea	$H_2 SO_4 / 20\%$ oleum = 1/3	79.5	-
5 ²⁾ urea	20% oleum	76.7	-
6 ²⁾ MNU	20% oleum	78.9	-

Note: 1) reaction condition: urea 6.0 g, H₂SO₄ 10 mL, 100% HNO₃;

2) reaction condition: urea 6.0 g, oleum 10 mL, 100% HNO_3 ;

terials

3) " – " indicates no isolated MNU.

4 热力学性质研究

由于 B3LYP 方法充分考虑了电子相关性,已得到 广泛应用,在 6-31 + G(d,p)水平下给出的分子结构 与性能更接近于实验值。采用 Gaussian 03 应用程序 中 DFT-B3LYP/6-31 + G(d,p)的计算方法进行几何 构型及热力学性质理论计算。

4.1 几何构型

DNU 在几何优化后的构型及原子编号见图 3, 键长、键角、二面角数据见表 3,对几何优化后的构型 进行振动频率计算,计算所得频率均为正值,表明所 得构型为势能面上极小点,即相对稳定结构。 从图 3 和表 3 可以看出: DNU 分子存在(I)和 (II)两种稳定构型,(I)为正交晶系结构,属手性 Fdd2 空间群^[8],其分子中存在螺旋扭曲结构,C(1)— N(3)—N(5)—O(7)和C(1)—N(8)—N(9)—O (10)为11.86°。(II)结构接近一平面,C(1)—N (8)—N(9)—O(10)二面角为0.004°,分子中O(7) 与 H(12)形成分子内氢键,其键长为1.9031 Å。比 较两种构型的能量,(I)能量为E(RB + HF - LYP) =-1665162.90 kJ·mol⁻¹,(II)能量为E(RB + HF - LYP) =-1665175.521 kJ·mol⁻¹,(II)能量为E(RB + HF - LYP) == -1665175.521 kJ·mol⁻¹,(II) + N(3)—N(5) 键长明 式(I)和(II)相比较,(II) + N(3)—N(5) 键长明 显缩短,(I)为1.4168 Å,m(II) + 1.3888 Å;与此 同时,由于分子的电荷转移,N(8)—N(9) 键长由(I) 中的1.4168 Å 增加到1.9196 Å,增加了35.5%。

4.2 热力学性质

DNU(Ⅱ)在 B3LYP/6-31 + G(d,p)几何优化 后,在 273~1000 K 温度范围的热力学函数值见表 4。 表 4 结果显示,所有热力学函数值在 273~1000 K 范 围内均随温度的升高而增加。对 DNU(Ⅱ)不同温度 下的热力学性质与温度进行关联,得到 273~1000 K 温度范围内 *E*^e_{t,m}、*C*^e_{p,m}、*S*^m_m 与温度 *T* 函数关系分别为:

 $E_{t,m}^{\theta} = 161.19995 + 0.10101 T + 0.00007.28902 T^{2}$ $C_{p,m}^{\theta} = 31.29877 + 0.38036 T - 0.000181 T^{2}$ $S_{m}^{\theta} = 259.29271 + 0.53188 T - 0.000155 T^{2}$

上述关系式拟合相关系数分别为 0.9999, 0.9990和 0.9999。根据 $dC_{p,m}^{\theta}/dT = 0.38036 -$ 0.000362*T*,可以看出在 273~1000 K 温度范围内温 度越高, $C_{p,m}^{\theta}$ 温度的变化越来越慢;当 *T* 超过 1050 K 时, $dC_{p,m}^{\theta}/dT < 0$, $C_{p,m}^{\theta}$ 反而会随温度的升高而减小,上 述各表达式和热力学量对深入研究 DNU 的其它热力 学性质及进一步研究爆炸性质有帮助。

图 3 B3LYP/6-31 + G(d,p)优化 DNU 后的结构 Fig. 3 Optimized geometry of DNU at B3LYP/6-31 + G(d,p) level

geometry	bond	legnth/Å	bond	angle/(°)	bond	angle/(°
	C(1)-O(2)	1.2146	O(2) - C(1) - N(3)	120.4537	O(2) - C(1) - N(3) - H(4)	-7.2523
	C(1) - N(3)	1.3967	O(2) - C(1) - N(8)	120.454	O(2) - C(1) - N(3) - N(5)	139.7868
	C(1) - N(8)	1.3967	N(3) - C(1) - N(8)	119.0924	N(8) - C(1) - N(3) - H(4)	172.7484
	N(3) - H(4)	1.015	C(1) - N(3) - H(4)	115.1081	N(8) - C(1) - N(3) - N(5)	-40.2125
	N(3) - N(5)	1.4168	C(1) - N(3) - N(5)	126.8225	O(2) - C(1) - N(8) - N(9)	139.7802
	N(5) - O(6)	1.2218	H(4) - N(3) - N(5)	110.7241 C	O(2) - C(1) - N(8) - H(12)	-7.2518
	N(5)-O(7)	1.2163	N(3) - N(5) - O(6)	113.5559	N(3) - C(1) - N(8) - N(9)	-40.2205
I)	N(8) - N(9)	1.4168	N(3)-N(5)-O(7)	118.2136	N(3) - C(1) - N(8) - H(12)	172.7476
	N(8)-H(12)	1.015	O(6) - N(5) - O(7)	128.2292	C(1) - N(3) - N(5) - O(6)	-167.7602
	N(9)-O(10)	1.2163	C(1) - N(8) - N(9)	126.821	C(1) - N(3) - N(5) - O(7)	11.8665
	N(9)-O(11)	1.2218	C(1) - N(8) - H(12)	115.107	H(4) - N(3) - N(5) - O(6)	-19.5457
			N(9) - N(8) - H(12)	110.7234	H(4) - N(3) - N(5) - O(7)	160.0811
			N(8) - N(9) - O(10)	118.2139	C(1) - N(8) - N(9) - O(10)	11.8714
			N(8) - N(9) - O(11)	113.5559	C(1) - N(8) - N(9) - O(11)	-167.7561
			O(10) - N(9) - O(11)	128.2289	H(12) - N(8) - N(9) - O(10)	160.079
					H(12) - N(8) - N(9) - O(11)	-19.5485
	C(1)-O(2)	1.2056	O(2) - C(1) - N(3)	117.3343	O(2) - C(1) - N(3) - H(4)	0.0061
	C(1) - N(3)	1.4276	O(2) - C(1) - N(8)	128.5999	O(2) - C(1) - N(3) - N(5)	-179.9518
	C(1) - N(8)	1.3803	N(3) - C(1) - N(8)	114.0657	N(8) - C(1) - N(3) - H(4)	179.9753
	N(3) - H(4)	1.0148	C(1) - N(3) - H(4)	115.4373	N(8) - C(1) - N(3) - N(5)	0.0173
	N(3) - N(5)	1.3888	C(1) - N(3) - N(5)	131.869	O(2) - C(1) - N(8) - N(9)	-0.0108
	N(5) - O(6)	1.2205	H(4) - N(3) - N(5)	112.6937	O(2) - C(1) - N(8) - H(12)	179.9768
	N(5) - O(7)	1.2323	N(3) - N(5) - O(6)	115.0724	N(3) - C(1) - N(8) - N(9)	-179.9757
	N(8) - N(9)	1.9196	N(3) - N(5) - O(7)	118.2682	N(3) - C(1) - N(8) - H(12)	0.0119
II)	N(8) - H(12)	1.4138	O(6) - N(5) - O(7)	126.6594	C(1)-N(3)-N(5)-O(6)	179.9683
	N(9) - O(10)	1.0188	C(1) - N(8) - N(9)	125.0547	C(1) - N(3) - N(5) - O(7)	-0.0232
	N(9) - O(11)	1.2123	C(1) - N(8) - H(12)	121.1314	H(4) - N(3) - N(5) - O(6)	0.0094
			N(9) - N(8) - H(12)	113.8139	H(4) - N(3) - N(5) - O(7)	-179.982
			N(8) - N(9) - O(10)	118.8234	C(1) - N(8) - N(9) - O(10)	0.004
			N(8) - N(9) - O(11)	112.7154	C(1) - N(8) - N(9) - O(11)	179.9848
			O(10) - N(9) - O(11)	128.4612	H(12) - N(8) - N(9) - O(10)	-179.9844
				× Q.	H(12) - N(8) - N(9) - O(11)	-0.0036

表 3 DNU 的 B3LYP/6-31 + G(d,p) 优化后的几何参数

Table 4 Thermodynamic properties of DNU(II) at different temperatures

		11-	
Т	$E_{t,m}^{\Theta}$	$C^{\Theta}_{p,m}$	S^{Θ}_m
/ K	$/kJ \cdot mol^{-1}$	∕J mol ⁻¹ • K ⁻¹	/ J • mol ^{−1} • K ^{−1}
273	193.914	119.644	390.337
300	197.258	127.975	402.793
400	211.475	155.425	445.893
500	228.149	177.127	484.863
600	246.733	193.814	520.213
700	266.784	206.638	552.379
800	287.968	216.641	581.760
900	310.043	224.583	608.729
1000	332.832	231.008	633.609

5 结 论

(1) 以尿素为原料在 20% 发烟硫酸/发烟硝酸体 系中,经硝化反应合成了二硝基脲,分离得到了中间体 硝基脲。证实了尿素硝化过程分两步进行,先生成硝 基脲,硝基脲进一步被硝化成二硝基脲。在最优条件 下,在20%发烟硫酸/发烟硝酸体积比为0.6/1时, 0~5 ℃,反应70 min,二硝基脲收率为83.2%。

(2) 量子化学计算结果表明, DNU 存在两种稳 定构型,(1)为正交晶系,存在螺旋扭曲结构,扭曲二 面角为11.86°,(Ⅱ)结构接近一平面,分子中存在分 子内氢键,二者能量差为12.621 kJ·mol⁻¹。

(3)通过 273~1000 K 温度范围 DNU 的热力学
 性质与温度关系式,发现热能(*E*^θ_{t,m})、热容(*C*^θ_{p,m})、熵
 (*S*^θ_m)均随温度的升高而增大。

参考文献:

- [1] Lobanova A A, Sataev R R, Popov N I. Chemistry of urea nitro derivatives II Synthesis of nitramide from N, N'-dinitrourea[J]. Russian Journal of Organic Chemistry, 2000, 36(2): 164 167.
- [2] Lobanova A A, Il'yasov S G, Popov N I. Chemistry of urea nitro derivatives II Synthesis of nitramide from N, N'-dinitrourea. New reaction of nitramide[J]. Russian Journal of Organic Chemistry, 2002,38(1): 1-6.
- [3] Patrick G, Niklas W, Helena B. Synthesis and analyses of N, N'-dinitrourea [J]. Propellants Explosives Pyrotechnics, 2001, 26: 17 20.

- [4] Syezewski M, Cieslowska-Glinska I, Bouiuk H, et al. Synthesis and properties of dinitroerea and its salts[J]. Propellants Explosives Pyrotechnics, 1998, 23: 155 – 158.
- [5] II'yasov S G, Lobanova A A, Popov N I. Chemistry of urea nitro derivatives III Recation of N, N'-dinitrourea with bases[J]. Russian Journal of Organic Chemistry, 2002, 38(12): 1731 – 1738.
- [6] Il'yasov S G, Lobanova A A, Popov N I. Chemistry of urea nitro derivatives IV Reaction of N, N'-dinitrourea with formaldehyde
 [J]. Russian Journal of Organic Chemistry, 2002, 38(12): 1939 1943.
- [7] 曹欣茂,李福平. 奧克托今高能炸药及其应用[M]. 北京:化学工业出版社,1993.
- CAO Xin-mao, LI Fu-ping. High Energetic Explosive of HMX and Its Application [M]. Beijing: Chemistry Industry Press, 1993.
- [8] Ye C, Gao H, Bredan T, et al. Dense energetic salts of *N*, *N'*-dinitrourea[J]. *New Journal of Chemistry*, 2008, 32: 317 – 322.

Synthesis, Characterization and Theoretical Research of Thermodynamics on Dinitrourea

YANG Jian-ming, YU Qin-wei, XUE Yun-na, LI Ya-ni, GE Zhong-xue, Lü Jian

 $(\mathit{Xi'an Modern Chemistry Research Institute}, \mathit{Xi'an 710065}, \mathit{China})$

Abstract: Dinitrourea is an important precursor in the synthesis of the cyclic nitroamine energetic compounds. Dinitrourea was synthesized through nitrification of urea by 100% HNO₃/20% oleum via mononitrourea as an intermediate. Under the optimal condition: 100% HNO₃/20% oleum(*V*/*V*) = 0.6/1, temperature of the first stage at -15 °C and temperature of the second stage at 5 °C, reaction time 50 min, the yield of dinitrourea is 83.2%. The structure of dinitrourea was also estimated by a B3LYP method based on 6-31 + G (d,p) basis set and the stable geometric configuration was obtained. The thermodynamic properties at different temperatures were obtained from vibrational analysis, and the relationship between temperature of 12.621 kJ · mol⁻¹. The calculated vibrational frequencies and intensities of DNU are in good agreement with the experimental values, and the values of $E_{i,m}^{\theta}$, $C_{p,m}^{\theta}$ and S_m^{θ} are increased with increasing of the temperature.

Key words: organic chemistry: dinitrourea; synthesis; theoretical calculation; geometric configuration; thermodynamics property CLC number: TJ55; O62 Document code; A DOI: 10.3969/j.issn.1006-9941.2011.02.009