文章编号: 1006-9941(2012)05-0541-04

硝基二唑炸药爆炸参数的经验计算(I)

王 军, 董海山, 李金山, 舒远杰

(中国工程物理研究院化工材料研究所,四川 绵阳 621900)

materials.org.cn 和個年 摘 要: 以 2, 4, 5 - 三硝基咪唑(2, 4, 5-TNI)为"母体"结构单元,用硝基、硝氨基和偶氮基等爆炸基团取代其 1 位氮上的氢原子 获得系列新型多硝基咪唑类炸药分子。运用 Brinkley-Wilson(B-W)法则、Rothsteine's 和 Kamlet 方法等对该类炸药的爆炸参数进行 了计算,并与 HMX 等炸药的爆炸参数进行了比较。结果表明,该类炸药密度大,爆速为7.9~9.2 km·s⁻¹,爆压为29.0~42.0 GPa, 接近 RDX 甚至 HMX,是一类新型高能量密度材料化合物;该类炸药分子中含芳香咪唑环,预计其分子稳定性良好。

关键词:有机化学;高能量密度材料化合物;多硝基咪唑;爆炸参数;经验计算

中图分类号: TJ55; O62

文献标识码: A

DOI: 10.3969/j. issn. 1006-9941. 2012. 05. 005

1 引言

多硝基咪唑类化合物[1-6]过去主要是作为药物来 研究, 直至最近20年来才发现其具有高能和安全性能 优良的炸药特性,在含能材料领域引起广泛关注[7-9]。 究其原因在于:多硝基咪唑分子中含有大量的 N-N, C-N和 C-N 键,具有较高的正生成焓,从而赋予其 较高的能量;并且,由于氮原子的电负性较大,能形成 类苯结构的大π键,作为炸药对静电、摩擦和撞击、冲 击波、光和热等外界刺激不敏感,热稳定性良好。但 是,由于咪唑环上多个硝基及其1位氮上氢原子的存 在使其具有较强酸性,若作为弹药使用容易腐蚀弹壳, 这也是它们至今未得到广泛应用的重要原因之一。因 此,本研究小组提出,用爆炸基团如硝基、硝氨基、偶氮 和氧化偶氮基等取代它们的酸性氢原子: (1) 可消除 多硝基咪唑的酸性;(2)可提升多硝基咪唑"母体"炸 药的能量;(3)借助"母体"炸药高能和安全性能优良 的特性可设计出一类新的高能低感炸药。本研究运用 预测炸药爆炸分解产物的 Brinkley-Wilson (B-W) 规 则、计算爆速的 Rothsteine's 方法和计算 C-J 压力的 Kamlet方法等对设计炸药的爆炸特性参数进行了计算 和预估,为实验室筛选合成提供了依据。

收稿日期: 2012-06-16; 修回日期: 2012-07-08

基金项目: 中国工程物理研究院国防预研项目(KZ-10)

作者简介:王军(1970-),男,硕士,副研究员,主要从事先进含能材料 的设计、合成及性能研究。e-mail: wj19701023@ sina.com

通讯联系人: 舒远杰(1969 -),男,博士,研究员。e-mail: syjfree@ sohu.com

2 爆炸参数的计算

2.1 爆炸反应方程式

为了计算爆炸参数,必须知道爆炸分解产物。为 了预测分解产物, Brinkley 和 Wilson 从能量优先角度 出发制定了一套规则[10],即 B-W 规则,据此规则可写 出设计炸药分子的爆炸反应方程式如表 1。

2.2 爆速和爆压的计算

Rothstein 和 Petersen^[11]认为,对于理想的含 C、H、 O、N 类元素的炸药来说,假设理论最大密度时的爆速 和爆压仅决定于化学成分和结构的爆轰因子(F)之间存 在线性关系。给出 F 和爆速计算公式见(1)和(2)。

 $F = 100 \times (nO + nN - nH/2nO + A/3 - nB/1.75 -$

$$nC/2.5 - nD/4 - nE/5)/M - G$$
 (1)

$$D = (F - 0.26)/0.55 \tag{2}$$

式(1)和(2)中,nH、nN、nO 为分子中氢原子、氮原子 和氧原子的数目; nB 为满足生成 CO。和 H。O 之后 富裕的氧原子数; nC 为氧原子以双键与碳原子结合 形成双键的数目; nE 为硝基脂或硝酸盐中硝基的数 \mathbb{E} 目,如硝基联胺; nD 为 C-O 单键的数目; F 为爆轰 因子; D 为爆速, km·s⁻¹; M 为物质的分子量; A 为 芳香族化合物 A=1,否则 A=0; G 为液体炸药 G=0.4. 固体炸药 G=0。

Kamlet 和 Abland [12] 从大量数据经过复杂的计算机 处理后,得到了爆速与压力(C-J)之间的关系如公式(3)。 $p_{ci} = \rho_0 D^2 (1 - 0.713 \rho_0^{0.07})$

式(3)中, ρ_{cj} 为爆轰气体产物的 C-J 压力,GPa; ρ_0 为 初始未反应炸药密度,g·cm⁻³; D 为爆速,km·s⁻¹。本文计算采用的密度和生成焓值为量子化学方法计算 所得。

根据公式(1)、(2)和(3)计算设计炸药的 D 及 p_{ci} ,结果见表 2。

2.3 爆热和爆温的计算

爆热是爆炸性物质能量的一种参量,并且早已用来评估炸药对周围环境的潜在危险性。因此在从事新炸药合成或配制前,需要对材料的爆热进行理论计算。由于炸药爆炸瞬间形成的温度很高,温度变化极快,而且爆炸时破坏性极大,因此实验测定爆温比较困难,所以爆温的理论计算就非常重要。

表1 设计炸药的分子结构及爆炸反应方程式

Table 1 Molecular structures and explosion equations of the designed explosives

explosive	molecular structure	explosion equation
No. 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_9 H_2 N_8 O_{12} =$ $H_2 O +7CO +2CO_2 +4N_2$
No. 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{15}N_{18}O_{24} = 6CO + 9CO_2 + 9N_2$
No.3	O_2N O_2N N N N N N N N	$C_3H_2N_6O_6 = H_2O + CO + 2CO_2 + 3N_2$
No. 4	$\begin{array}{c} O_2 N \\ \\ O_2 N \end{array} \begin{array}{c} N \\ \\ N \\ NH-NO_2 \end{array}$	$C_3 HN_7 O_8 = 0.5H_2O +3CO_2 +0.75O_2 +3.5N_2$
No.5	$O_2N \longrightarrow N$ $O_2N \longrightarrow N$ $N \longrightarrow NO_2$ NO_2	$C_3N_6O_8 = 3CO_2 + O_2 + 3N_2$
No.6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_6 N_{12} O_{12} = 6CO_2 + 6N_2$
No. 7	NO ₂ O ₂ N NO ₂ O ₂ N NO ₂	$C_6 N_{12} O_{13} = 6CO_2 + 0.5O_2 + 6N_2$

表 2 设计炸药的爆速和爆压

 Table 2
 Detonation velocity and pressure of the designed explosives

			2.1		
explosive	$ ho_0$	$\Delta H_{ m f}$	E O	Đ .	p_{cj}
	/g ⋅ cm ⁻³	/kJ⋅mol ⁻¹	5.	/km·s¯	GPa /
No.1	1.851	52.2	4.6014	7.89	29.48
No.2	1.950	158.1	4.6182	8.43	35.00
No.3	1.917	194.69	5.3058	9.17	40.94
No.4	1.990	264.19	5.1763	8.94	40.04
No.5	2.008	167.05	4.9962	8.61	37.42
No.6	1.953	494.04	5.3549	9.26	42.37
No.7	1.979	638.07	5.2594	9.09	41.22
HMX ^[13]	1.910	75.00	-	9.11	39.50
$RDX^{[13]}$	1.820	70.00	-	8.64	33.80
TATB ^[13]	1.937	-150.00	-	7.97	31.30

Note: F is detonation gene.

根据盖斯定律^[10]可计算出物质的爆热(水为气态)。由参考文献[14]可查得 298K 时, H_2O 、CO、 CO_2 的定压生成热为 241.8, 110.5, 395.5 kJ·mol⁻¹,又采用量子化学方法计算出了设计炸药的生成热(表1),因此,对爆温的计算可利用爆轰产物的平均热容如公式(4)来计算。

$$Q_{v} = \overline{C}_{v} (T_{R} - T_{0}) = \overline{C}_{v} \Delta T \tag{4}$$

式(4)中, Q_v 为炸药的定容爆热, $kJ \cdot mol^{-1}$; T_o 为炸药的初温,取 298 K; T_B 为炸药的爆温,K; ΔT 为爆炸产物从 T_o 到 T_B 的温度间隔,K; C_v 为爆轰产物在温度间隔 t 内的平均热容量, $kJ \cdot K^{-1}$ 。即:

$$\overline{C}_{v} = \sum n_{i} \overline{C}_{vi} \tag{5}$$

式(5)中, n_i 为第 i种爆炸产物的物质的量, $mol; C_{vi}$ 为第 i种爆炸产物的平均分子比热容, $kJ \cdot mol^{-1} \cdot K^{-1}$ 。

○ 对于一般工程计算,认为平均分子热容与温度间隔 t 为线性关系,

即 $\overline{C}_{vi} = a_i + b_i t$,则 $\overline{C}_v = A + Bt$,($A = \sum n_i a_i$, $B = \sum n_i b_i$)(6),因而有公式(7):

$$T_{\rm B} = \frac{-A + \sqrt{A^2 + 4BQ_{\rm v}}}{2B} + 298 \tag{7}$$

对于常见的炸药,当 t < 4000 ℃时,可近似采用 Kast平均分子热容式,由参考文献[15]可查得,爆轰产物的 a, b 值为:三原子气体 $a_i = 37.665$, $b_i = 2.427 \times 10^{-3}$; 双原子气体 $a_i = 20.08$, $b_i = 1.883 \times 10^{-3}$; 水蒸气 $a_i = 16.74$, $b_i = 8.996 \times 10^{-3}$; 碳 $a_i = 25.1$, $b_i = 0$ 。计算设计炸药的爆热和爆温,结果见表 3。

表3 设计炸药的爆热和爆温

Table 3 Detonation energy and temperature of the designed explosives

explosive	$Q_{ m v}/{ m kJ} \cdot { m mol}^{-1}$	T _B /K
No. 1	1622.44	3982.78
No. 2	3620.03	4542.87
No. 3	965.96	4104.33
No. 4	1062.42	4073.56
No. 5	1036.79	4282.72
No.6	1908.69	4493.29
No. 7	1765.90	4141.02
HMX ^[11]	1747.34	3800
RDX ^[11]	1266.08	3700
TATB ^[11]	856.03	- WW.

2.4 爆容计算

若已知炸药的爆炸变化过程,其爆容很容易按 Avogadro 定律^[10]求得:

$$V_0 = \frac{22400 \, n}{M} (\, \text{L/kg}) \tag{8}$$

式(8)中,M为物质的分子量,g;n为气态爆炸产物物质的量之和,mol。

根据设计炸药的爆炸反应方程式及公式(8)可计算出设计炸药的爆容,结果见表4。

表 4 设计炸药的爆容

Table 4 Detonation volume of the designed explosives

explosive	$V_0/L \cdot kg^{-1}$	
No. 1	757.49	
No. 2	658.82	
No.3	719.27	
No.4	660.08	
No. 5	632.26	
No. 6	622.22	
No. 7	625.00	10
HMX ^[11]	927.00	181
RDX ^[11]	890.00	46/,

由表 2~表 4 可以看出,设计炸药的爆速和爆压基本都接近 RDX 甚至 HMX,其中 No. 6 炸药的密度、爆速、爆压、爆热和爆温都超过了 HMX,只有爆容小于 HMX。除 No. 1 外,设计炸药的能量都接近 RDX 甚至 HMX。由此说明,设计的该类多硝基咪唑炸药是一类新型高能量密度材料化合物,值得更深入的理论和实验研究。

3 结 论

根据炸药学、炸药合成化学、有机化学和有机合成

等相关理论知识,选取 2, 4, 5-三硝基咪唑(2, 4, 5-TNI)为"母体"结构单元,基于其 1 位氮上的酸性氢原子设计获得了系列新型多硝基咪唑类炸药分子;采用Brinkley-Wilson 规则、Rothsteine's和 Kamlet 方法等计算出了设计炸药的爆速、爆压和爆热等爆炸特性参数值。结果表明,该类炸药具有良好的爆轰性能,爆速在 7.9~9.2 km·s⁻¹之间,爆压在 29.0~42.0 GPa之间,是一类能量接近 RDX 甚至 HMX 的新型高能量密度材料化合物,值得更深入的理论和实验研究。并且,计算得出的 HMX 爆轰参数与实测值比较误差小于 3.0%,证明上述算法具有良好的可信性。

谨以此文悼念我国含能材料先驱董海山院士。

参考文献:

- [1] Breccia A, Cavalleri B, Adams G E. Nitroimidazoles, Chemistry, Pharmacology and Clinical Applications. Nato Advanced Study Institute Serie A 42[M]. Plenum Press, New York, 1982.
- [2] Nair M D, Nagarajan K. Nitroimidazoles Chemotherapeutic A-gents[J]. Prod Drug Res, 1983,27: 163.
- [3] Pagoria P F, Lee G S, Mitchell A R, et al. The synthesis of amino and nitro-substituted heterocycles as insensitive energetic materials [R]. Report UCRL-ID-142918,2001.
- [4] Huynh M H V, Hiskey M, Pollard C J, et al. 4, 4, 6, 6-Tetrasubstituted hydrazo and azo 1, 3, 5-trazines [J]. *Energ Mater*, 2004, 22;217 229.
- [5] Huynh M H V, Hiskey M, Ernest L, et al. Polyazido high nitrogen compounds: Hydrazo and azo-1,3,5-triazine[J]. *Angew Chem Int Ed*,2004, 43: 4924 4928.
- [6] Neutz J, Grosshardt O, Schaufele S, et al. Synthesis, characterization and thermal behavior of guanidi-nium. 5-aminotetrazole (GA): A new nitrogen rich compound[J]. Propellants, Explosives, Pyrotechnics, 2003, 28: 181 188.
- [7] Reddy Damavarpu, Keerti Jayasuriya, Vladimiroff Theodore, et al. 2, 4-Dinitroimidazole: A less sensitive explosive and propellant made by thermal rearrangement of molten 1, 4-dinitroimidazole: USP 5, 387 297 [P], 1995.
- [8] 刘慧君,曹端林,李永祥,等. 2,4-DNI的研究进展[J]. 含能材料,2005,13(4):269-272.
 LIU Hui-jun, CAO Duan-lin, LI Yong-xiang, et al. The research progress on 2, 4-DNI[J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2005,13(4):269-272.
- [9] 杨利,高福磊,凡庆涛,等、咪唑类含能化合物的研究进展[J]. 含能材料,2009, 17(3): 374-379.
 YANG Li, GAO Fu-lei, FAN Qing-tao, et al. The research progress on energetic compound of imidazole[J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2009,17(3): 374-379
- [10] 炸药理论编写组. 炸药理论[M]. 北京:国防工业出版社,1982. Explosive theory edition group. Explosive Theory [M]. Beijing: National defense industry press, 1982.
- [11] Rothstein L R, Petersen R Prediction of velocity of detonation [J]. *Propellants Expiosives Pyrotechnics*, 1979(4): 56 62.
- [12] Cooper P W. Extending estimation of C-J pressure of explosives

- to the very low-density region [C]// Proceedings of the 18th International Pyrotechnic Symposium, Breken-ridge, 1992.
- [13] 欧育湘. 炸药学[M]. 北京: 北京理工大学出版社,2006. OU Yu-xiang. Explosive [M]. Beijing; University of Science & Technology press, 2006.
- [14] 宋世谋,王正烈,李文斌. 物理化学(第三版)[M]. 北京: 高等教育出版社,1995.
- SONG Shi-mou, WANG Zheng-lie, LI Wen-bing. Physicochemsitry (3rd edition) [M]. Beijing: High-grade education press, 1995.)
- [15] 欧育湘. 炸药分析[M]. 北京: 兵器工业出版社,1994. OU Yu-xiang. Explosive Analysis [M]. Beijing: Armament industry press, 1994.

Empirical Calculation of the Explosion Parameters of Nitrodiazole Explosives

WANG Jun, DONG Hai-shan, LI Jin-shan, SHU Yuan-jie

(Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China)

Abstract: New polynitroimidazole explosive molecules were designed using 2, 4, 5-trinitroimidazole as "matrix" structural unit. The explosion parameters of designed explosives were calculated by Brinkley-Wilson(B-W) rule for predicting explosion decomposition products, Rothsteine's method for estimating detonation velocity and Kamlet method for estimating C-J pressure. And the calculated detonation parameters were compared with those of RDX and HMX explosives. Results show that the designed explosives are a new class of high energy density material compounds with high density, detonation velocity and detonation pressure approaching to that of RDX even HMX. As imidazole ring in the molecules, having aromacity, the stability of these explosives molecules designed is favorable for potential application.

Key words: organic chemistry; high energy density material compound; polynitroimidazole; explosion parameters; empirical calculation

CLC number: TJ55; O62

Document code: A

DOI: 10.3969/j. issn. 1006-9941. 2012. 05. 005

《含能材料》创刊 20 周年纪念活动——专刊征稿

2013年,《含能材料》迎来创刊 20 周年。过去的 20 年,是我国含能材料科学技术事业大发展的 20 年,也是《含能材料》稳步发展、茁壮成长的 20 年。作为以董海山院士为代表的我国火炸药科技事业的开拓者们创建的专业学术期刊,《含能材料》见证了我国火炸药、推进剂等领域 20 年来的光辉发展历程。20 年来,《含能材料》凝炼出"传承火药文明,创新能源材料"的办刊理念。

重温过去,展望未来,为纪念《含能材料》创刊 20 周年,《含能材料》将于 2013 年 4 月(第 2 期)出版 "《含能材料》创刊 20 周年纪念专刊",并特设新能源材料专栏,报道聚变能源材料、储氢材料、金属氢等新能源材料的研究成果。

为此,特向国内外广大专家征集研究快报、研究论文和综述,以期集中反映我国近年来在含能材料、新概念含能材料及其相关领域取得的重要学术成果。

稿件类型:(1) 简要报道新概念含能材料最新研究成果的研究快报(英文),以基金项目为主;(2) 具有较高创新性的原创研究论文;(3) 具有较高水平的综述文章。

截稿日期:2012年12月30日。

请通过《含能材料》网上投稿系统直接上传稿件,请在"拟投栏目"中选择"《含能材料》创刊 20 周年纪念专刊"。

《含能材料》编辑部