文章编号:1006-9941(2013)04-0473-06

DNTF 的核磁表征及理论研究

王民昌, 毕福强, 张 皋, 栾洁玉, 徐 敏, 宁艳利, 樊学忠 (西安近代化学研究所,陕西西安710065)

大erials.org.cn 实验与 C 摘 要:为了完善 3,4-双(4'-硝基呋咱-3'-基)氧化呋咱(DNTF)的核磁表征,采用 NMR 实验与 GIAO-NMR 理论计算相结合的方 法区分并归属¹³C和¹⁵N的化学位移。采用二甲基亚砜(DMSO- d_{s})、丙酮(Acetone- d_{s})和氯仿(CDCl₃)为溶剂,进行了 DNTF 的 一维¹³C NMR和¹⁵N NMR 实验,并在 DMSO-d。中获得 DNTF 的所有核磁信号。采用二维 INADEQUATE 实验完成了¹³C NMR 的 归属。采用高斯 09 程序,在 DFT-B3 LYP/6-311 + G (2d, p)水平上优化了 DNTF 结构,用 GIAO 方法在不同基组上计算了 ¹³C NMR和¹⁵N NMR 的化学位移,计算结果与实验值→致性较好。结果表明,受氧化呋咱环上氧原子 O(22)吸电子作用的影响, C(9)与C(13)的化学位移出现较大的差别,与C(13)相比,C(9)出现在高场。

关键词:分析化学;DNTF;核磁表征;二维碳碳相关稀核双量子转移实验(INADEQUATE);理论研究

中图分类号: TJ55; O65

文献标识码:A

DOI: 10.3969/j.issn.1006-9941.2013.04.014

1 引 言

呋咱类含能化合物由于具有高能量密度、高标准生 成焓、高氮含量等优点,是含能材料领域备受关注的研 究方向之一[1-3]。其中 3,4-双(4'-硝基呋咱-3'-基)氧 化呋咱(DNTF)集呋咱、氧化呋咱及硝基于一体,在众 多呋咱化合物中最为典型,综合性能优于奥克托今 (HMX),特别是其熔点低,可用作熔铸炸药中的液相载 体,已成为新一代高能量密度材料^[4-6],具有广阔的应 用前景。在 DNTF 结构表征方面已经获得完整的红外、 质谱数据,然而,核磁共振(NMR)表征研究却不够深 入,由于 DNTF 结构中不含氢,仅由对 NMR 不灵敏核 的 C、N、O 三种元素组成,尽管研究人员获得了其碳谱 和氮谱数据^[5-7],但因缺乏相关的经验数据及理论支 撑,无法直接对 NMR 信号准确归属。另外,因缺乏灵 敏有效的 NMR 相关机制,常规的二维 NMR(大多为含 氢化合物设计)也无能为力,为该类化合物核磁表征研 究带来极大困难。作为 NMR 实验的有益补充, NMR 的理论计算也受到越来越多的关注,在指认与解释图谱 方面发挥了重要的作用^[8-11]。马海霞等^[12]通过理论计 算值与实验值对比,对 DNTF 的核磁信号进行归属,但 是仅计算了碳谱化学位移,且因实验数据不全(获得了

收稿日期: 2012-09-13;修回日期: 2012-12-12

作者简介: 王民昌(1980-),男, 工程师, 主要从事火炸药波谱学研究。 e-mail. wmc204@163.com

6个碳信号中的4个信号),归属出现错误。

本实验则详细研究了 DNTF 在不同氘代试剂溶 液中的碳谱与氮谱,采用二维碳碳相关稀核双量子转 移实验 (Incredible Natural Abundance Double Quantum Transfer Experiment, INADEQUATE)^[13]完 成了碳信号的全归属。同时,利用量子化学密度泛函 理论(Density Functional Theory, DFT)^[14-16]对 DNTF 的结构和¹³C、¹⁵N NMR 化学位移进行了理论研 究,进一步从理论角度解释了 DNTF 的分子结构和 NMR 化学位移之间的关系,为呋咱类化合物 NMR 研 究提供技术和理论参考。

2 实验

2.1 主要仪器与试剂

试剂: DNTF, 纯度≥99.5%, 西安近代化学研究 所; 氘代二甲基亚砜 (DMSO-d, 99.8%)、氘代丙酮 (Acetone-d₆,99.8%)、氘代氯仿(CDCl₃,99.8%), 美国 CIL 公司。

仪器:瑞士 Bruker 公司 AV500 型(500MHz)超 导核磁共振仪。

2.2 仪器条件

一维实验:采用正向检测探头(BBO 多核宽带探头), Ф5 mm 样品管,¹H NMR 观测频率为 500.13 MHz, ¹³C NMR的观测频率为 125.77MHz, ¹⁵N NMR 的观 测频率为 50.69 MHz。1H、13C NMR 以 TMS 为内标

含能材料

(δ 0), ¹⁵N NMR 以硝基甲烷(CH₃NO₂)为外标 (δ_N 0); 二维 INADEQUATE 实验: 采样点阵 $t_2 \times t_1 =$ 8192×128, FT 变换数据点阵 $F_2 \times F_1 =$ 8192×1024, 累加次数 *ns* = 256,脉冲延迟时间 $d_1 =$ 5 s, 混合时间 $d_2 =$ 7.6 ms。

2.3 计算方法

运用 Gaussian 09 程序,以密度泛函理论的 B3LYP^[17] 方法在 6-311 + G(2d,p)基组水平下对 DNTF 分子进 行几何全优化。对优化后的构型进行振动分析,无虚 频,表明其对应自势能面上的极小点。用 GIAO 方法 分别在 B3LYP/6-311G、B3LYP/6-311G(d)、B3LYP/ 6-311G(2d,p)、B3LYP/6-311 + G(2d,p)水平上计 算了 DNTF 的核磁共振碳谱与氮谱。

3 结果与讨论

3.1 不同氘代试剂溶液中 DNTF 的谱图特征

研究了 DNTF 在氘代氯仿、氘代丙酮和氘代二甲 基亚砜溶液中的谱图特征,如图1和图2所示。 DNTF 在 3 种溶剂中的碳谱和氮谱化学位移值列于表 1。碳谱中,丙酮与氯仿溶液中在 δ160 附近信号明显 呈多重峰,这可能是由于¹⁴N核偶合所致,但只能发现 5条谱线,与结构中的6个碳原子数目不相符。而在 DMSO 溶液中可明显观察到6条谱线,与分子结构一 致, 目碳谱位移在 δ 160.43、 δ 160.24 出现明显可区分 信号,因此,推测在丙酮、氯仿溶液中,8160附近的信 号应为2条谱线叠加而难以区分,且由于弛豫时间长 而信号较弱。文献[12] NMR 观测到的实验结果见 表1,结果与本实验丙酮溶液中的较强信号基本一致, 本实验还观测到 δ 160 附近较弱的 2 个信号。另外, DNTF 在氯仿溶液中溶解度较差,所以其碳谱信噪比 较差,氮谱则难以检出。丙酮与二甲基亚砜中可观测 到8条尖锐的氮谱谱峰,与结构中的8个氮原子一致。 由于溶剂效应,样品在3种溶剂中的化学位移略有差 别,但基本一致。但因化学环境接近而不易归属各个 碳与氮原子,需要进一步从实验与理论研究中获得准 确归属。

表 1	DNTF 在不同氘代试剂中的 ¹³ C, ¹³ N NMR 数据
Table	1 ¹³ C and ¹⁵ N NMR of DNTF in different solvent

3.2 DNTF 碳链结构的 INADEQUATE 实验确认

在氘代 DMSO 溶液中全面检测 DNTF 的 ¹³C NMR、¹⁵N NMR 基础上,通过二维 INADEQUATE 实验技术进行了碳信号的全归属。DNTF 分子中不含 氢,所有的碳原子均为季碳,如图3所示,故无法利用 ¹³C-¹H相关信号对碳原子进行指配,因此,季碳的指配 存在较大的困难,二维(2D)¹³C-¹³C INADEQUATE NMR 实验可用于确定分子骨架中碳原子的连接顺序, 即:在2D INADEQUATE 谱图中,横轴为¹³C 核的化学 位移,纵轴为双量子频率,所有偶合的(或相邻的)一 对¹³C 核形成 AX 或 AB 自旋体系,在同一水平线上左 右对称的处于准对角线的两侧。据此可以确定相邻的 碳原子,进而连接出整个分子的碳原子骨架,是碳与碳 相连及结构确认的最有效的手段,但通常因灵敏度太 低而难以实现。DNTF 在 DMSO 溶液中的溶解度较 大,较高浓度可大幅提高 INADEQUATE 实验的灵敏 度,因此,采用该技术可完成对 DNTF 碳骨架的确认。

solvent	后间	6	¹³ C	NMR (δ)						¹⁵ N 1	NMR (δ)			
DMSO- d_6	160.43	160.24	143.25	139.77	137.31	103.80	53.77	51.97	36.25	36.11	-0.57	-19.04	-34.93	-35.16
acetone- d_6	160.68	160.68	143.71	140.42	138.08	104.36	55.68	53.98	41.22	40.06	-1.73	-18.86	-36.99	-37.06
CDCl ₃	158.26	158.26	141.05	138.07	136.18	102.07					-			
ref. [12]	_2)	-2)	$143.748^{1)}$	140.430^{1}	138.073 ¹⁾	104.411 ¹⁾					-			

Note: 1)¹³C NMR data from reference [12], 2) undetected signal.

图 3 DNTF 结构 Fig. 3 Structure of DNTF

二维 INADEQUATE 实验(图 4)结果表明, DNTF 分子中的 6 个不同化学位移的碳原子具有 δ 160.43→ $\delta 137.31 \rightarrow \delta 103.80 \rightarrow \delta 143.25 \rightarrow \delta 139.77 \rightarrow \delta 160.24$ 的连接顺序。从结构分析可知,O(22)的存在使得 C(9)与C(13)的化学环境出现较大的差异,而对 C(2)、C(3)、C(14)、C(15)的影响较小,因此, δ103.80与 δ143.25 应为C(9)或 C(13)的信号峰,由 于 N(10)→O(22)键的拉电子作用,使得氧化呋咱环 中的电子云偏向于 N(10),从而使得邻位碳原子 C(9)的屏蔽增加而处在高场,因此, δ103.80 为 C(9),相应的,δ143.25 为C(13),根据图 4 及 DNTF 中碳链的连接顺序,可完成¹³C NMR 的全归属,按照 碳原子连接顺序其归属依次为:C(2)(δ160.43)、 $C(3)(\delta 137.31)$, $C(9)(\delta 103.80)$, $C(13)(\delta 143.25)$, C(14)(*δ*139.77)、C(15)(*δ*160.24)。而对比文献 [12]中仅有 C(9)的信号归属正确,由于缺失的 δ 160 附近2个碳信号引起其他碳信号的错误归属。

3.3 NMR 理论研究

3.3.1 DNTF 的稳定构型

传统的从头算方法与密度泛函理论已被广泛应用 于表征电子作用。从头计算方法由于花费太大而只限 在小分子体系中使用,而 DFT 方法能够廉价有效描述 电子相互作用及交换,其中的 B3LYP 方法是 NMR 理 论计算应用最广的一种方法。

采用密度泛函理论的 B3LYP 方法在 6-311 + G (2d, p)基组水平上对 DNTF 的几何结构进行了全优 化,经振动频率分析,结果表明无虚频,说明该构型为 势能面上的极小点,为相对稳定构型,其结构见图 5, 其键长键角的计算结果见表 2。从表 2 可知,DNTF 稳定构型键长键角数据与文献[5]报道的晶体结构基 本一致,说明该计算结果较为可靠。DNTF 三个环处 于不同平面,两个呋咱环与氧化呋咱环的夹角分别为 -47.27°与47.60°。硝基上的氧原子与呋咱环不在同一平面,分别偏离呋咱环平面10.49°与6.81°。

图 4 DNTF 的¹³C-¹³C INADEQUATE 图 (DMSO- d_6) Fig. 4 ¹³C-¹³C INADEQUATE spectrum of DNTF(DMSO- d_6)

图 5 DNTF 优化结构 Fig. 5 Optimized structure of DNTF

3.3.2 NMR 谱的理论计算

规范不变原子轨道(Gauge Independent Atomic Orbital, GIAO)^[18-19]方法是目前公认的预测核磁共振化学位移较为准确的方法,已成功用于一些小分子及大中分子的 NMR 预测。在结构优化后,用 GIAO方法,在不同基组水平上对 DNTF 分子中 C、N 原子的化学位移进行理论计算,因计算所得为绝对屏蔽值,其相对化学位移通过参比化合物(四甲基硅烷与硝基甲烷)的屏蔽值进行校准,其计算结果与实验结果见表 3 和表 4。计算结果表明,B3LYP 方法计算化学位移低估屏蔽而使计算结果偏大,随着计算基组的增大,与实验结果也越接近。对计算结果与实验数据进行线性回归,获得回归方程及相关系数列入表 3 和表 4 中。

表 2 DNTF 的键长与键角计算结果

Table 2The bond lengths and bond	angles
----------------------------------	--------

	bo	nd length/nm		bond angles/(°)		
geometrical parameters	calc.	exp. ^[5]	geometrical parameters	calc.	exp. [5]	
N(1) - C(2)	0.12975	0.1289(3)	C(2) - N(1) - O(5)	104.9361	104.8(2)	
N(1) - O(5)	0.13499	0.1372(3)	N(1) - C(2) - C(3)	110.2081	110.7(2)	
C(2) - C(3)	0.14289	0.1421(3)	N(1) - C(2) - N(6)	120.5602	120.0(2)	
C(2) - N(6)	0.14558	0.1459(4)	C(3) - C(2) - N(6)	129.2264	129.1(2)	
C(3) - N(4)	0.13074	0.1303(3)	C(2) - C(3) - N(4)	106.7074	107.4(2)	
C(3) - C(9)	0.14567	0.1445(3)	C(2) - C(3) - C(9)	132.8204	132.3(2)	
N(4) - O(5)	0.13682	0.1375(3)	N(4) - C(3) - C(9)	120.3835	120.3(2)	
N(6)-O(7)	0.12288	0.1217(3)	C(3) - N(4) - O(5)	106.1568	106.1(2)	
N(6) - O(8)	0.12116	0.1207(3)	N(1) - O(5) - N(4)	111.9889	111.05(18)	
C(9) - N(10)	0.13404	0.1336(3)	C(2) - N(6) - O(7)	114.9342	115.4(2)	
C(9) - C(13)	0.14267	0.1405(3)	C(2) - N(6) - O(8)	118.3041	117.1(3)	
N(10)-O(11)	0.14529	0.1440(3)	O(7) - N(6) - O(8)	126.7615	127.4(3)	
N(10)-O(22)	0.12050	0.1212(3)	C(3) - C(9) - N(10)	118.8290	122.1(2)	
O(11) - N(12)	0.13510	0.1372(3)	C(3) - C(9) - C(13)	134.7369	131.5(2)	
N(12) - C(13)	0.13056	0.1302(3)	N(10) - C(9) - C(13)	106.3946	106.4(2)	
C(13)-C(14)	0.14681	0.1472(3)	C(9) - N(10) - O(11)	106.2086	106.69(19)	
C(14) - C(15)	0.14264	0.1415(3)	C(9) - N(10) - O(22)	135.243	135.5(2)	
C(14)-N(18)	0.13055	0.1304(3)	O(11)-N(10)-O(22)	118.5374	117.8(2)	
C(15)-N(16)	0.12979	0.1296(3)	N(10) - O(11) - N(12)	108.3915	107.98(17)	
C(15) - N(19)	0.14566	0.1442(3)	O(11) - N(12) - C(13)	107.9607	106.7(2)	
N(16)-O(17)	0.13491	0.1366(3)	C(9) - C(13) - N(12)	111.0423	112.2(2)	
O(17)-N(18)	0.13712	0.1379(3)	N(12) - C(13) - C(14)	117.0709	119.8(2)	
N(19)-O(20)	0.12116	0.1227(3)	C(13) - C(14) - C(15)	133.4514	131.5(2)	
N(19)-O(21)	0.12287	0.1255(3)	C(13) - C(14) - N(18)	119.4969	120.9(2)	
			C(15) - C(14) - N(18)	106.9179	107.7(2)	
			C(14) - C(15) - N(16)	110.2047	111.0(3)	
			C(14) - C(15) - N(19)	129.1468	128.5(2)	
			N(16) - C(15) - N(19)	120.6399	120.4(3)	
			C(15) - N(16) - O(17)	104.9164	104.1(2)	
			N(16)-O(17)-N(18)	111.9596	111.98(18)	
			C(14)-N(18)-O(17)	105.9998	105.4(2)	
			C(15)-N(19)-O(20)	118.3124	117.3(2)	
		: als	[°] C(15)-N(19)-O(21)	114.9257	116.8(2)	
		orla	O(20)-N(19)-O(21)	126.762	125.8(3)	
		Maro				

表 3 DNTF 的¹³C NMR 实验结果与理论计算结果

Table 3	Experimental a	nd calculated	chemical	shifts of	¹³ C NMR	for DNTF
---------	----------------	---------------	----------	-----------	---------------------	----------

No.	6-311G	6-311G(d)	6-311G(2d,p)	6-311 + G(2d,p)	exp. ¹⁾	ref. [12]
C(2)	165.25	166.07	165.73	165.69	160.43	-
C(15)	164,77	165.61	165.26	165.10	160.24	143.748
C(13)	149.13	150.34	150.05	150.39	143.25	138.073
C(14)	145.75	147.36	147.22	147.14	139.77	-
C(3) 5 BU	143.44	144.80	144.48	144.25	137.31	140.430
C(9)	110.21	109.22	108.30	108.87	103.80	104.411
regression equation	y = 1.0314x - 10.24	y = 0.9976x - 6.09	y = 0.9871x - 4.16	y = 0.9982x - 5.86	-	-
R^2	0.9996	0.9974	0.9966	0.9969	-	-

Note: 1) experimental results of $^{13}\mathrm{C}$ NMR for DNTF in DMSO- $d_6.$

表4 DNTF 的¹⁵N NMR 实验结果与理论计算结果

Table 4 Experimental and calculated chemical shifts of ¹⁵ N NMR fo	r DNTF
---	--------

No.	6-311G	6-311G(d)	6-311G(2d,p)	6-311 + G(2d,p)	exp. ¹⁾
N(4)	104.35	88.50	83.90	80.03	53.77
N(18)	103.70	86.79	82.03	76.95	51.97
N(16)	86.62	72.12	68.79	64.59	36,25
N(1)	85.88	71.49	68.32	63.87	36.11
N(12)	33.12	17.59	13.21	7.25	-0.57
N(10)	-14.65	-7.12	-7.06	-10.48	-19.04
N(19)	-32.44	-27.11	-26.20	-29.15	-34.93
N(6)	-32.84	-27.39	-26.40	-29.24	-35.16
regression equation	y = 0.6183 x - 14.75	y = 0.7447x - 14.5	$4 \qquad y = 0.7778x - 13.90$	y = 0.7859x - 10.94	-
R^2	0.9904	0.9974	0.9959	0.9944	-

Note: 1) experimental results of 15 N NMR for DNTF in DMSQ- d_6 .

从相关系数上看,计算结果与实验值吻合较好。 碳谱计算尤为准确,小基组就可以获得较好的计算结 果,最大误差小于10,经回归后,与实验结果相符程度 非常高,可应用于核磁的谱线解释与归属。与之相比, 氮谱计算更为复杂,误差也更大,但回归方程显示结果 仍然较为理想,相关系数均高于0.99,对氮谱信号的 归属具有参考价值。另外,氮谱计算结果显示在低频 区计算结果与实验值符合较好,而对于呋咱环上的氮 则相对较差,推测其原因为理论计算仅考虑单个分子 上的电子屏蔽效应,事实上,由于氮灵敏度低,需要在 高浓度下完成 NMR 测试,故需要考虑分子间的相互 作用,从 DNTF 结构看,计算偏差大的几组氮原子均 与氧原子距离接近,在浓度较大时,可能会发生相互作 用,引起该几组氮的位移变化。

综上所述,DFT 结合 GIAO 方法计算呋咱类含能 化合物的核磁化学位移较为可靠,与实验结果一致,可 应用于该类化合物的结构解析。

4 结 论

(1) DNTF的碳谱与氮谱在二甲基亚砜、丙酮、氯 仿中的 NMR 实验结果基本一致,在二甲基亚砜中碳 谱的分辨率最高,可获得完整的碳谱信息。

(2)采用二维 INADEQUATE 实验获得了 DNTF 分子中碳原子之间的连接顺序,通过分析氧化呋咱环 上配位氧原子的吸电子作用,确定了C(9)与C(13) 的化学位移,完成了 DNTF 分子中碳信号的全归属。

(3)在 DNTF 优化构型的基础上,以密度泛函理 论的 B3LYP 方法结合 GIAO 方法计算获得了 DNTF 的碳谱和氮谱化学位移,与实验结果吻合较好,相关系 数均大于0.99。

参考文献:

- [1]张叶高, 王伯周, 刘愆, 等. 5-[4-硝基呋咱基]-5H-[1,2,3]三唑 并[4,5-c][1,2,5]呋咱内盐(NOTO)合成与表征[J]. 含能材 料,2010,18(4):383-386. ZHANG Ye-gao, WANG Bo-zhou, LIU Qian, et al. Synthesis of 5-(4-nitro-1, 2, 5-oxadiazol-3-yl)-5*H*-[1, 2, 3] triazolo[4, 5-c] [1,2,5] oxadiazolium inner salt[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010,18(4); 383 – 386.
- [2] 李亚南, 张志忠, 周彦水, 等. 3, 4-二(吡嗪-2'-基)氧化呋咱的 合成与表征[J].火炸药学报,2009,32(6):40-43. LI Ya-nan, ZHANG Zhi-zhong, ZHOU Yan-shui, et al. Synthesis and characterization of 3, 4-bis(pyrazine-2'-yl) furoxan[J]. Chinese Journal of Explosives & Propellants, 2009, 32(6): 40 -43
- [3] 薛云娜,杨建明,李春迎,等.3,4-二苯基氧化呋咱的高效合成 [J].火炸药学报,2010,33(1):34-36. XUE Yun-na, YANG Jian-ming, LI Chun-ying, et al. Synthesis of 3,4-diphenylfuroxan with high efficiency[J]. Chinese Journal of Explosives & Propellants, 2010, 33(1): 34-36.
- [4] 胡焕性, 覃光明, 张志忠. 3, 4-二硝基呋咱基氧化呋咱炸药: CN02101092.7[P], 2002.
- HU Huan-xing, QIN Guang-ming, ZHANG Zhi-zhong. 3,4-Dinitrofurazanfuroxan explosive: CN 02101092.7 [P], 2002.
- [5] 周彦水,张志忠,李建康,等.3,4-二硝基呋咱氧化呋咱的晶体 结构[J]. 火炸药学报, 2005, 28(2): 43-46. ZHOU Yan-shui, ZHANG Zhi-zhong, LI Jian-kang, et al. Crystal structure of 3,4-dinitrofurazanofuroxan[J]. Chinese Journal of Explosives & Propellants, 2005, 28(2): 43 - 46.
- [6] 王军, 董海山, 黄奕刚, 等. 3, 4-二(硝基呋咱基) 氧化呋咱的 晶体结构研究[J].含能材料,2006,14(5):374-376. WANG Jun, DONG Hai-shan, HUANG Yi-gang, et al. Crystal structure of 3,4-bis(nitrofurazano) furoxan[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(5): 374 -376.
- [7] 周彦水, 王伯周, 李建康, 等. 3, 4-双(4'-硝基呋咱-3'-基)氧化 呋咱合成、表征与性能研究[J]. 化学学报, 2012, 69(14): 1673 -1680.

ZHOU Yan-shui, WANG Bo-zhou, LI Jian-kang, et al. Study on synthesis, characterization and properties of 3, 4-bis (4'-nitrofurazano-3'-yl) furoxan []]. Acta Chimica Sinica, 2012, 69 (14): 1673 - 1680.

- [8] 刘兴艳,廖显威,陈国力,等. 几种磺酰脲类除草剂的1H NMR 谱的理论研究[J]. 波谱学杂志,2008,25(2):211-215.
 LIU Xing-yan, LIAO Xian-wei, CHEN Guo-li, et al. Theoretical calculation of ¹H NMR spectra of sulfonylurea herbicides [J]. *Chinese Journal of Magnetic Resonace*, 2008, 25(2):211-215.
- [9] 徐志广,古国榜,吴松平,等. 2-丁基-四氢噻吩亚砜¹³C-NMR的 理论研究[J].结构化学,2004,23(10):1183-1188.
 XU Zhi-guang, GU Guo-bang, WU Song-ping, et al. A theoretical study on ¹³C-NMR of 2-butyl-tetrahydrothiophene-1-oxide [J]. *Chinese J Struct Chem*, 2004, 23(10):1183-1188.
- [10] 陈海燕,林翠梧,陈光英,等. Mycoepoxydiene 核磁共振谱的理论研究 [J]. 化学研究, 2006, 17(4):6-9.
 CHEN Hai-yan, LIN Cui-wu, CHEN Guang-ying, et al. Theoretical study on the NMR of Mycoepoxydiene [J]. *Chemical Research*, 2006, 17(4):6-9.
- [11]任洁,朱华结.计算化学在手性化合物结构分析中的应用[J]. 高等学校化学学报,2009,30(10):1907-1918.
 REN Jie, ZHU Hua-Jie. Application of computational chemistry in identification for chiral compounds[J]. *Chemical Journal of Chinese Universities*, 2009, 30(10):1907-1918.
- [12] 马海霞, 宋纪蓉, 肖鹤鸣, 等. 3, 4-二硝基呋咱基氧化呋咱 (DNTF)的密度泛函理论研究[J]. 火炸药学报, 2006, 29(3): 43-46.
 MA Hai-xia, SONG Ji-rong, XIAO He-ming, et al. Density functional theoretical investigation on 3, 4-dinitrofurazanfuroxan (DNTF) [J]. Chinese Journal of Explosives & Propellants, 2006.
- 29(3): 43 46.
 [13] Lee S G. Carbon-13 two-dimensional INADEQUATE experiment of coprostane[J]. Bull Korean Chem Soc, 2001, 22(4): 429 431.

- [14] 李玉芳, 廖昕, 居学海, 等. 多叠氮基嗪异构化反应的密度泛函 理论研究[J]. 含能材料, 2010, 18(3): 241-246.
 LI Yu-fang, LIAO Xin, JU Xue-hai, et al. Density functional theory study on tautomerization of polyazido-azine [J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2010, 18(3): 241-246.
- [15] 林秋汉,李玉川,祁才,等. 6,6'-二氨基氧化偶氮-1,2,4,5-四 嗪-1,1',5,5'-四氧化物(DAATO5)的密度泛函理论[J].火炸药 学报,2010,33(3):21-24.
 LIN Qiu-han, LI Yu-chuan, QI Cai, et al. Density functional theory of 6,6'-diamino-oxidation of azo-1,2,4,5-tetrazine-1,1', 5,5'-4-oxide compound [J]. *Chinese Journal of Explosives & Propellants*, 2010, 33(3):21-24.
- [16] 胡银,马海霞,李军锋,等. ATO 的 DFT 研究、热力学性质及绝热至爆时间 [J].火炸药学报,2009,32(4):18-21.
 HU Yin, MA Hai-xia, LI Jun-feng, et al. A density-functional theoretical investigation, thermodynamic properties and adiabatic time-to-explosion of ATO [J]. *Chinese Journal of Explosives & Propellants*, 2009, 32(4):18-21.
- [17] 史秀锋, 孟瑞娟, 庞先勇, 等. C(24)团簇异构体的量子化学计算[J]. 现代化工, 2009, 29 (增刊): 347-350.
 SHI Xiu-feng, MENG Rui-juan, PANG Xian-yong, et al. Quantum chemical investigation of C(24) clusters isomers[J]. Modern Chemical Industry, 2009, 29 (supple): 347-350.
- [18] Knijn P J, van Bentum P J M, van Eck E R H, et al. A solid-state NMR and DFT study of compositional modulations in AlxGa1xAs[J]. Phys Chem Chem Phys, 2010, 12:11517 -11535.
- [19] Li Y, Gao H, Zhang J, et al. Comparison of GIAO and CSGT for calculating ¹³C and ¹⁵N nuclear magnetic resonance chemical shifts of substituent neutral 5-aminotetrazole and 5-nitrotetrazole compounds[J]. *Magn Reson Chem*, 2012, 50: 16-21.

NMR Characterization and Theoretical Investigation of DNTF

WANG Min-chang, BI Fu-qiang, ZHANG Gao, LUAN Jie-yu, Xu Min, NING Yan-Ii, FAN Xue-zhong

 $(\mathit{Xi'an Modern Chemistry Research Institute}, \mathit{Xi'an 710065}, \mathit{China})$

Abstract: In order to optimize the NMR assignment of 3,4-dinitrofurazanfuroxan (DNTF), a combination of experimental NMR and computational GIAO-NMR techniques was utilized to distinguish the chemical shifts of ¹³C and ¹⁵N. One dimensional (1D) ¹³C and ¹⁵N NMR analyses were performed using DMSO- d_6 , acetone- d_6 and CDCI₃ as solvent. All signals of DNTF were found in DMSO- d_6 . In the ¹³C NMR, the chemical shifts were assigned by 2D INADEQUATE NMR experiment. Based on the geometry of DNTF optimized at the DFT-B3LYP/6-311 + G(2d, p) level by using Guassian 09 program, the ¹³C and ¹⁵N NMR chemical shifts were calculated by GIAO method at different level, which agree with experimental data. Results show that the electro-withdrawing effect of the O(22) in furoxan cycle leads to large ¹³C chemical shift changes of C(9) and C(13), and makes C(9) appear in higher field than C(13).

Key words: analytical chemistry; NMR characterization; incredible natural abundance double quantum transfer experiment (INADEQUATE); theoretical investigation

CLC number: TJ55; O65

Document code: A

DOI: 10.3969/j.issn.1006-9941.2013.04.014