文章编号:1006-9941(2013)05-0578-05

新型绿色起爆药硝氨基四唑钙(Ⅱ)五水化合物的晶体结构

佟文超,王七卫,武碧栋,杨 利,张同来 (北京理工大学爆炸科学与技术国家重点实验室,北京100081)

1815.019.01 20) 1~ 4K 长大举 摘 要:用缓慢蒸发法制备了新型绿色起爆药硝氨基四唑钙(Ⅱ)五水化合物[Ca(NATZ)(H,O),]的单晶。用 X 射线衍射仪表 征其单晶结构。该晶体属三斜晶系,空间群为 P1,晶胞参数为: a=0.64803(13) nm,b=0.74328(16) nm,c=1.0348(2) nm,α $=74.482(8)^{\circ},\beta=72.487(9)^{\circ},\gamma=74.755(9)^{\circ},V=0.44888(16)$ nm³,Z=4,D_c=2.050 g・cm⁻³。根据 Ca(NATZ)(H,O)₅ 的结构特征研究了它的分解机理。运用 Gaussian 03 程序,用 HF6-311C 和 B3LYP6-311C 方法对 Ca(NATZ)(H,O)。进行了全优 化几何构型和轨道能量分析。所得结果与前人实验研究结果 致: 热稳定性差,且热分解失重主要为两个阶段。

关键词:物理化学;起爆药;五水合硝氨基四唑钙(Ⅱ);晶体结构;理论研究

中图分类号: TJ55; O643

文献标识码:A

DOI: 10.3969/j.issn.1006-9941.2013.05.004

1 引 言

随着起爆药行业的不断发展,近年来推出了不少 新型的起爆药品种,如叠氮肼镍(NHN)、高氯酸三碳 酰肼合镉(GTG)、高氯酸三碳酰肼合锌(GTX)等,已被 广泛应用于民用爆破器材的工业系列雷管中。目前,环 保绿色起爆药仍是国内外学者不断研究的方向^[1-3]。

Zhilin 等先后报道了两种高能含能化合物高氯 酸・四氨・双(5-硝基四唑)合钴(Ⅲ)^[4]和高氯酸・四 氨·双(1-甲基-5-氨基四唑)合钴(Ⅲ)^[5]。Klapötke 等 合成了多种双四唑胺类和铜的配合物^[6-7],其于 2009 年报道合成了新型含能配合物——五水合硝氨基四唑 钙(II)^[8],经烘干后去掉结晶水,对其感度和起爆性能 做了测试,0.5g无水硝氨基四唑钙(Ⅱ)可成功起爆 2.0 g六硝基茋(HNS),认为该药是一种新型的可代替 氮化铅的绿色起爆药,适合大规模生产,最具应用价值。

虽然 Klapötke 等对硝氨基四唑钙(Ⅱ)的合成方 法和晶体结构以及热力学性质等进行了介绍,但是未 对其晶体结构进行详细描述与分析。本研究合成了五

收稿日期: 2013-05-06; 修回日期: 2013-06-05

基金项目:爆炸科学与技术国家重点实验室基金(No. QNKT12-02 和 ZDKT10-01b),应用物理化学重点实验室基金(No.9140C3703051105 和 9140C370303120C37142)

e-mail: wenchao061@126.com

通讯联系人:杨利(1972-),女,教授,主要从事含能材料的基础理论 与应用研究。e-mail: yanglibit@ bit. edu. cn

水合硝氨基四唑钙(II)(Ca(NATZ)(H₂O)₅),制备了 五水合硝氨基四唑钙的单晶,详细报道了它的晶体结构 数据,并根据其结构特征研究了 Ca(NATZ)(H₂O)₅ 的 分解机理,同时运用量化计算的方法分析了它的稳定 性,为该化合物的进一步应用提供基础理论。

2 实验部分

2.1 试剂

氢氧化钙为市售分析纯; 5-硝氨基四唑按照文献 方法自制^[9]。

2.2 Ca(NATZ)(H₂O)₅的制备

称量1.30 g(0.01 mol)5-硝氨基四唑溶于10 mL 蒸馏水中作为底液加入反应器。将 0.74 g(0.01 mol) 氢氧化钙逐滴分批加入到 5-硝氨基四唑的溶液中。在 恒温 70 ℃的油浴条件下搅拌反应 1 h。静置、过滤,得 到的白色物质在热水中重结晶,过滤,乙醇洗涤得产物。

2.3 单晶的培养与结构测定

将母液置于 80 mL 烧杯中静置,缓慢蒸发溶液, 得到无色 Ca(NATZ)(H,O); 晶体。

选取尺寸为0.40 mm ×0.40 mm ×0.40 mm 的 单晶,置于 Rigaku AFC-10 /Saturn 724⁺CCD 面探 X 射线单晶衍射仪上,在103(2) K下,用 Mo K。射线 $(\lambda = 0.071073 \text{ nm})$,采用 Multi-scan 方式, θ 为 2. 90°~30.02°范围内进行扫描,共收集了4870个衍射 点,其中独立衍射点2541个,可观察衍射点2258个。 解析之前对所有的衍射点进行L。因子和多次扫描吸

作者简介: 佟文超(1987-),男,博士研究生,主要从事研究。

收校正。主要原子坐标用 SHELXS-97 (Sheldrick, 1997)程序由直接法求得,其它非氢原子坐标由差值 Fourier 合成法得到。用 SHELXL-97(Sheldrick, 1997) 程序选用 61 个各向异性参数,由全矩阵最小二乘法 对非氢原子进行结构优化。所有氢原子均为理论加 氢,利用几何参数对氢原子坐标进行结构优化。分子结 构用 SHELXS-97 程序^[10]由直接法求得,在 SHELXL-97 程序^[11]中用基于 F² 的全矩阵最小二乘法进行精修。

2.4 量子化学计算

选取 Ca(NATZ)(H_2O)₅分子作为初始模型,运用 Gaussian 03 程序,用 HF/6-311G,B3LYP/6-311G 两种方法对所选分子体系进行几何全优化和频率计算。计算中所有收敛精度均取程序设定的缺省值。

3 结果与讨论

3.1 Ca(NATZ)(H₂O)₅的晶体结构描述

Ca(NATZ)(H₂O)₅的主要晶体学数据列于表 1。 Ca(NATZ)(H₂O)₅的分子结构及堆积图分别见图 1 和图 2。主要键长、键角与扭转角数据列于表 2~表 4。

3.2 晶体结构分析与讨论

(1) 由图 1 可以看出,每个最小不对称结构单元 中含有 1 个中心 Ca²⁺,1 个 NATZ 分子和 6 个与 Ca²⁺ 配位的水分子。Ca²⁺分别与 NATZ 分子中四唑环上 1 位上的 N、NATZ 分子中硝氨基上的一个 O 原子以及 6 个 H₂O 分子中的 O 原子形成八配位十二面体结 构。同时由于 Ca²⁺的 3 d¹⁰构型不会发生 d-d 跃迁,这 与所得晶体为无色的事实相符。

(2) NATZ⁻阴离子中O(2)—N(6)[1.2887(17)],
N(5)—C(1)[1.3901(19)]和N(2)—N(3)
[1.3136(19)]的键长比5-NATZ分子中O(2)—N(6)
(1.2344),N(5)—C(1)(1.3405)和N(2)—N(3)
(1.2778)的键长稍长,而N(3)—N(4)[1.3389(18)]
和N(5)—N(6)[1.2767(19)]的键长要比5-NATZ 分子中N(4)—N(3)(1.3521)和N(5)—N(6)
(1.3626)的键长要短,这是由于5-硝氨基四唑分子中 存在 π 电子的离域现象。

(3)图2为配合物晶体的晶胞堆积图,从图中可以看出,分子中配位键和分子间氢键的共同作用使得 Ca(NATZ)(H₂O)₅以高聚形态存在,形成较稳定的 三维网状结构。

(4) 从 Ca(NATZ)(H₂O)₅的分子结构图(图1)
 可以看出,有4分子水中的O与Ca²⁺为μ1配位,1分

子水中的 O 与 Ca²⁺为 μ 2 配位,使得这一分子的水与 Ca²⁺的配位更加牢固。另外,Ca(1)—O(1)[2.4113 (13)]和 Ca(1)—N(1)[2.4892(14)]的键长相对 于 Ca(1)—O(3)[2.5736(13)]的键长要短,键合较 强,说明 Ca²⁺与 NATZ⁻阴离子中的 N(1)和 O(1)形 成的六元环更加牢固。由此可以推断 Ca(NATZ) (H₂O)₅的热分解失重过程为,第一阶段先分解失去 四分子的水,第二阶段再失去一分子的水,这与文献 [8]报道的实验结果是一致的。

表 1 Ca(NATZ)(H_2O)₅的晶体学参数和结构测定参数 **Table 1** Crystallographic parameters for Ca(NATZ)(H_2O)₅

parameter	values
empirical formula	$CH_{10}CaN_6O_7$
crystal description	block
formula weight	258.23
crystal color	colorless
T/K	103(2)
$D_c/g \cdot m^{-3}$	1.910
crystal system	Triclinic
θ/(°)	2.90 ~ 30.02
space group	<i>P</i> – 1
h, k, l	-9~9,-8~10,-14~14
a/nm	0.64803(13)
reflections collections	4870
<i>b</i> /nm	0.74328(16)
independent reflection (R_{int})	$2541(R_{int} = 0.0174)$
c/nm	1.0348(2)
S	0.999
α/(°)	74.482(8)
$R_1, wR_2[I > 2\sigma(I)]^{(1)}$	$R_1 = 0.0336$, $wR_2 = 0.0780$
$oldsymbol{eta}/(\circ)$	72.487(9)
R_1 , wR_2 (all data) ¹⁾	$R_1 = 0.0378$, $wR_2 = 0.0807$
$\gamma/(\circ)$	74.755(9)
$\Delta \rho_{\rm max}$, $\Delta \rho_{\rm min} / ({\rm e} \cdot {\rm \AA}^{-3})$	0.827, -0.533
V/nm ³	0.44889(16)
μ (Mo K _{α})/mm ⁻¹	0.736
Ζ	2
<i>F</i> (000)	268.0

Note: 1) $w = 1/[\sigma^2(F_0^2) + (0.0429p)^2 + 0.3776p]$, $p = (F_0^2 + 2F_c^2)/3$

图 1 Ca(NATZ)(H₂O)₅的分子结构图 Fig. 1 Molecular structure for Ca(NATZ)(H₂O)₅

图 2 从 a 轴、b 轴和 c 轴观察到的 Ca(NATZ)(H₂O)₅ 的晶胞堆积图 🥝

Packing diagram of Ca(NATZ)(H_2O)₅ viewed along the *a*-axis, *b*-axis and *c*-axis Fig. 2 NN.e

表2 Ca(NATZ)(H₂O)₅的主要键长

Table 2 Selected bond lengths for $Ca(NATZ)(H_2O)_5$

bond	lengths/Å	bond	lengths/Å	bond	lengths/Å	bond	lengths/Å
Ca(1)-O(6)	2.3676(12)	Ca(1)-Ca(1A)	4.3197(10)	O(5)-H(5A)	0.8517	N(2) - N(3)	1.3136(19)
Ca(1) - O(5)	2.3983(13)	O(1) - N(6)	1.2761(17)	O(5) - H(5B)	0.8183	N(3) - N(4)	1.3389(18)
Ca(1)-O(7)	2.3989(13)	O(2)-N(6)	1.2887(17)	O(6)-H(6A)	0.8364	N(4) - C(1)	1.340(2)
Ca(1) - O(1)	2.4113(13)	O(3)-Ca(1)	2.6421(13)	O(6)-H(6B)	0.9073	N(5) - N(6)	1.2767(19)
Ca(1) - N(1)	2.4892(14)	O(3)-H(3A)	0.8813	O(7)-H(7A)	0.8728	N(5) - C(1)	1.3901(19)
Ca(1) - O(4)	2.5128(12)	O(3) - H(3B)	0.8513	O(7)-H(7B)	0.9739		
Ca(1) - O(3)	2.5736(13)	O(4)-H(4A)	0.8538	N(1) - C(1)	1.337(2)		
Ca(1)-O3A)	2.6421(13)	O(4) - H(4B)	0.8655	N(1) - N(2)	1.3492(19)		

表3 Ca(NATZ)(H₂O)₅的主要键角

Table 3	Selected	bond	angle	for	Ca(NATZ) (H,O)
---------	----------	------	-------	-----	-----	------	-----	-----	---

bond	angle/(°)	bond	angle/(°)	bond	angle/(°)	bond	angle/(°)
O(6)—Ca(1)—O(5)	83.74(4)	N(1)— $Ca(1)$ — $Ca(1)$	137.55(3)	N(6)—O(1)—Ca(1)	140.69(10)	Ca(1)—O(7)—H(7B)	118.1
O(6)—Ca(1)—O(7)	87.72(4)	O(4)— $Ca(1)$ — $Ca(1)$	104.48(3)	Ca(1)-O(3)-Ca(1)	111.82(4)	H(7A)—O(7)—H(7B)	110.4
O(5)—Ca(1)—O(7)	72.89(4)	O(7)—Ca(1)—O(3)	74.07(4)	Ca(1)—O(3)—H(3A)	104.7	C(1) - N(1) - N(2)	104.26(13)
O(6)—Ca(1)—O(1)	99.76(4)	O(1)—Ca(1)—O(3)	78.03(4)	Ca(1)—O(3)—H(3A)	111.2	C(1) - N(1) - Ca(1)	129.71(10)
O(5) - Ca(1) - O(1)	142.62(4)	N(1)-Ca(1)-O(3)	136.64(4)	Ca(1)—O(3)—H(3B)	107.8	N(2)—N(1)—Ca(1)	125.87(10)
O(7)—Ca(1)—O(1)	144.01(4)	O(4)-Ca(1)-O(3)	71.92(4)	Ca(1)—O(3)—H(3B)	113.4	N(3)—N(2)—N(1)	109.39(13)
O(6) - Ca(1) - N(1)	73.28(4)	O(7)—Ca(1)—O(3)	77.74(4)	H(3A)—O(3)—H(3B)	107.4	N(2)—N(3)—N(4)	110.00(13)
O(5) - Ca(1) - N(1)	78.55(4)	O(1)-Ca(1)-O(3)	71.00(4)	Ca(1)—O(4)—H(4A)	107.4	N(3) - N(4) - C(1)	104.31(13)
O(7) - Ca(1) - N(1)	147.20(4)	N(1) - Ca(1) - O(3)	119.88(4)	Ca(1) - O(4) - H(4B)	116.2	N(6) - N(5) - C(1)	119.47(13)
O(1) - Ca(1) - N(1)	67.24(4)	O(4)—Ca(1)—O(3)	135.31(4)	H(4A)— $O(4)$ — $H(4B)$	107.0	O(1)—N(6)—N(5)	126.15(13)
O(6) - Ca(1) - O(4)	147.85(4)	O(3)—Ca(1)—O(3)	68.18(4)	Ca(1)—O(5)—H(5A)	116.7	O(1)—N(6)—O(2)	117.24(13)
O(5)—Ca(1)—O(4)	76.53(4)	O(6) - Ca(1) - Ca(1)	106.42(3)	Ca(1)—O(5)—H(5B)	120.4	N(5)—N(6)—O(2)	116.60(13)
O(7)—Ca(1)—O(4)	109.84(4)	O(5)—Ca(1)—Ca(1)	143.81(3)	H(5A)—O(5)—H(5B)	112.5	N(1)-C(1)-N(4)	112.05(13)
O(1) - Ca(1) - O(4)	81.93(4)	O(7)—Ca(1)—Ca(1)	72.94(3)	Ca(1)—O(6)—H(6A)	118.0	N(1) - C(1) - N(5)	131.78(14)
N(1) - Ca(1) - O(4)	78.05(4)	O(1)—Ca(1)—Ca(1)	71.18(3)	Ca(1)—O(6)—H(6B)	119.4	N(4) - C(1) - N(5)	116.17(14)
O(6) - Ca(1) - O(3)	140.09(4)	O(3)—Ca(1)—Ca(1)	34.60(3)	H(6A)—O(6)—H(6B)	108.1		
O(5) - Ca(1) - O(3)	122.11(4)	O(3)—Ca(1)—Ca(1)	33.58(3)	Ca(1)—O(7)—H(7A)	113.7		

含能材料

表 4	$Ca(NATZ)(H_2O)_5$	分子中键的扭转角

Table 4Torsion angles for $Ca(NATZ)(H_2O)_5$

bond	angle/(°)	bond	angle/(°)	bond	angle/(°)
O(6)-Ca(1)-O(1)-N(6)	-92.83(15)	N(1)-Ca(1)-O(3)-Ca(1)	110.95(6)	O(5)-Ca(1)-N(1)-N(2)	25.37(11)
O(5)-Ca(1)-O(1)-N(6)	-0.37(18)	O(4) - Ca(1) - O(3) - Ca(1)	159.43(5)	O(7)-Ca(1)-N(1)-N(2)	-4.34(16)
O(7)-Ca(1)-O(1)-N(6)	167.48(13)	O(3) - Ca(1) - O(3) - Ca(1)	0.0	O(1)-Ca(1)-N(1)-N(2)	-170.00(12)
N(1)-Ca(1)-O(1)-N(6)	-25.71(14)	O(6) - Ca(1) - N(1) - C(1)	123.90(13)	O(4) - Ca(1) - N(1) - N(2)	103.83(12)
O(4) - Ca(1) - O(1) - N(6)	54.66(15)	O(5)-Ca(1)-N(1)-C(1)	-149.27(13)	O(3) - Ca(1) - N(1) - N(2)	150.50(10)
O(3)-Ca(1)-O(1)-N(6)	127.78(15)	O(7) - Ca(1) - N(1) - C(1)	-178.97(11)	O(3) - Ca(1) - N(1) - N(2)	-120.41(11)
O(3) - Ca(1) - O(1) - N(6)	-161.42(15)	O(1) - Ca(1) - N(1) - C(1)	15.36(12)	Ca(1) - Ca(1) - N(1) - N(2)	-157.71(9)
Ca(1) - Ca(1) - O(1) - N(6)	163.02(15)	O(4) - Ca(1) - N(1) - C(1)	-70.81(13)	C(1)-N(1)-N(2)-N(3)	0.09(16)
O(6)—Ca(1)—O(3)—Ca(1)	-16.83(8)	O(3)-Ca(1)-N(1)-C(1)	-24.13(15)	Ca(1) - N(1) - N(2) - N(3)	-175.66(9)
O(5)—Ca(1)—O(3)—Ca(1)	-140.18(5)	O(3) - Ca(1) - N(1) - C(1)	64.95(14)	N(1)-N(2)-N(3)-N(4)	0.16(16)
O(7)-Ca(1)-O(3)-Ca(1)	-82.90(5)	Ca(1) - Ca(1) - N(1) - C(1)	27.65(15)	N(2) - N(3) - N(4) - C(1)	-0.33(16)
O(1)-Ca(1)-O(3)-Ca(1)	74.12(5)	O(6) - Ca(1) - N(1) - N(2)	-61.46(11)	Ca(1) - O(1) - N(6) - N(5)	21.6(2)
Ca(1)-O(1)-N(6)-O(2)	-159.61(11)	C(1) - N(5) - N(6) - O(2)	-174.68(12)	Ca(1) - N(1) - C(1) - N(4)	175.21(9)
C(1)-N(5)-N(6)-O(1)	4.1(2)	N(2) - N(1) - C(1) - N(4)	-0.30(16)	N(2)-N(1)-C(1)-N(5)	178.85(15)
N(6) - N(5) - C(1) - N(1)	-10.3(2)	N(6) - N(5) - C(1) - N(4)	168.80(13)	Ca(1) - N(1) - C(1) - N(5)	-5.6(2)
N(3)-N(4)-C(1)-N(1)	0.40(16)	N(3)-N(4)-C(1)-N(5)	-178.90(12)		

3.3 分子总能量及前线轨道能量分析

运用 HF 和 B3LYP 两种方法对 Ca(NATZ)(H,O)。 分子进行了几何全优化和频率计算。两种计算方法对 Ca(NATZ)(H,O)。进行几何优化所得的键长、键角 与测定结果比较,B3LYP 的计算结果与实验值非常接 近,表明计算结果可信,而 HF 与实验值存在较大偏差 (大于5%),计算结果不可靠。根据 B3LYP 方法计算 结果,该体系共有492个分子轨道(MO),其中134个 为占据轨道。由计算得到的分子总能量、前线轨道能 量(*E*_{HOMO}, *E*_{LUMO})和能差分别为-3153.70051731, -0.24522, -0.07742 和 0.16780Hartree。HOMO 轨道和 LUMO 轨道如图 3 所示。Ca(NATZ)(H₂O)₅ 八 的最高占据轨道(HOMO)主要由 5-NATZ 分子中原 子的 2p, 轨道构成, 最低空轨道(LUMO) 主要分布在 5-NATZ 的除 N(3)外的原子的 $2p_z$ 轨道,且由前线轨 道能级差 ΔE_{I-H} (0. 16780 Hartree) 较小可知, $Ca(NATZ)(H_2O)_5$ 分子的配位稳定性较差,因此该 分子在 72 ℃开始失水, 150 ℃脱去 5 分子水, 得到 Ca(NATZ)

4 结 计

合成了新型绿色起爆药五水合硝氨基四唑钙(II) [Ca(NATZ)(H₂O)₅],制备了五水合硝氨基四唑钙的 单晶,详细报道了它的晶体结构数据,该晶体属三斜晶 系,空间群为 $P\overline{1}$,晶胞参数为: a = 0.64803(13) nm, b =

b. LUMO

图 3 $Ca(NATZ)(H_2O)_5$ 的 HOMO(左)和 LUMO(右)轨道 Fig. 3 HOMOand LUMO of Ca(NATZ)(H_2O)_5

0.74328(16) nm, c = 1.0348(2) nm, $\alpha = 74.482(8)^\circ$, $\beta = 72.487(9)^\circ$, $\gamma = 74.755(9)^\circ$,V = 0.44888(16) nm³, Z = 4, $D_c = 2.050$ g·cm⁻³。运用量化计算对其进行 了结构优化分析,所得结果与前人实验研究结果一致: 热稳定性差,且热功率失重元要为两个阶段。

参考文献:

- [1] WU Bi-dong, ZHANG Jian-guo, ZHANG Tong-lai, et al. Two environmentally friendly energetic compounds, [Mn (AZT)₄ $(H_2O)_2$] $(PA)_2 \cdot 4H_2O$ and $[Co(AZT)_2(H_2O)_4](PA)_2$, based on 3-azido-1,2,4-triazole (AZT) and picrate(PA)[J]. Eur J Inorg Chem, 2012: 1261 – 1268.
- [2] Mehta N, Oyler K D., Cheng G. Green replacements for leadbased materials and safe synthesis and characterization of primary explosives. [C] // IPSUSA Seminars, 38th Inc. Proceedings of the International Pyrotechnics Seminar, 2012: 433-443.
- [3] ZHU Shun-Guan, SUN Yan-ling, ZHANG Lin, et al. A new green primary explosive: zinc 5,5'-azotetrazole. [C] // IPSUSASeminars, 38th Inc. Proceedings of the International Pyrotechnics Seminar ,2012: 696 - 704.
- [4] Zhilin A Y, Ilyushin M A, Tselinskii I V, et al. Synthesis of a high-energy-capacity compound, tetrammine-cis-bis (nitro-2Htetrazolato-N²) cobalt (III) perchlorate. [J]. Russian Journal of Applied Chemistry 2001,74:96-99.
- [5] Zhilin A Y, Ilyushin M A, Tselinskii I V, et al. Synthesis and properties of tetraamminebis (1-methyl-5-aminotetrazole-N3, N4) cobalt(Ⅲ) perchlorate[J]. Russian Journal of Applied Chemistry.

2002,75:1849-1851.

- [6] Klapötke T M, Meyer P, Polborn K, et al. New Trends in Research of Energetic Materials. [C] // Proceedings of the Seminar, 9th, Pardubice, Czech Republic, 2006: 641-651.
- [7] Klapötke T M, Meyer P, Polborn K, et al. [C] // 37th International Annual Conference of ICT, Karlsruhe, Federal Republic of Germany, 2006: 134/1 - 134/14.
- [8] Klapötke T M, Stierstorfer J. A green replacement for lead azide: calcium 5-nitriminotetrazolate[C] // New Trends in Research of Energetic Materials, Czech Republic, 2009: 825-831.
- [9] 庞思平, 李玉川. 5-硝氨基四唑的合成. [C] // 2008 年火炸药学术 研讨会论文集.北京:北京理工大学,2008:46-49.
- PANG Si-ping, LI Yu-chuan. The Synthesise of 5-Nitroaminotetrazole. [C] // Proceedings of the 2008 Explosives & Propellants Seminar. Beijing Institute of Technology, Beijing, 2008: 46 -49.
- [10] Sheldrick G M. SHELXS-97, Program for the Refining of Crystal Structure [CP]. University of Göttingen, Germany, 1997.
- [11] Sheldrick G M. SHELXL-97, Program for the Solution of Crystal Structure [CP]. University of Göttingen, Germany, 1997.

Crystal Structure of a Novel Green Initiating Explosive Calcium Nitriminotetrazolate Pentahydrate

TONG Wen-chao, WANG Shi-wei, WU Bi-dong, YANG Li, ZHANG Tong-lai

(State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

Abstract: The single crystal of calcium nitriminotetrazolate pentahydrate [Ca(NATZ)(H2O)], a novel green initiating explosive was prepared by slow evaporation method. Its structure was characterized by a X-ray diffractometer. The crystal is triclinic, space group $P\bar{1}$ with crystal parameters of a = 0.64803 (13) nm, b = 0.74328 (16) nm, c = 1.0348 (2) nm, $\alpha = 74.482 (8)^{\circ}$, $\beta = 1.0348 (2)$ nm, $\alpha = 74.482 (8)^{\circ}$, $\beta = 1.0348 (2)$ nm, $\alpha = 74.482 (8)^{\circ}$, $\beta = 1.0348 (2)$ nm, $\alpha = 74.482 (8)^{\circ}$, $\beta = 1.0348 (2)^{\circ}$, $\beta = 1$ 72.487(9)°, $\gamma = 74.755(9)°$, V = 0.44888(16) nm³, Z = 4, $D_c = 2.050$ g · cm⁻³. On the basis of the structure characteristics of Ca(NATZ)(H2O)5, its decomposition mechanism was studied. The full optimized geometry and orbital energy analysis of Ca(NATZ)(H₂O)₅ were performed with the HF6-311G and B3LYP-6-311G methods using the Gaussian 03 program. Its thermal stability was studied. Rusults show there are two steps in its thermal decomposition which is agreed with expriments.

Key words: physical chemistry; initiating explosive; calcium nitriminotetrazolate pentahydrate; crystal structure; theoretical investigation

CLC number: TJ55; O643

Document code: A

DOI: 10.3969/j.issn.1006-9941.2013.05.004