文章编号:1006-9941(2014)02-0226-04

结构参数对半预制破片 PELE 弹丸毁伤性能的影响

尹建平¹,刘同鑫¹,张洪成²,简秋丰³,尤 梅⁴

(1. 中北大学 机电工程学院,山西 太原 030051;2. 重庆红字精密工业有限责任公司,重庆 402760;3. 上海空间电源研究所, 上海 200233;4. 二炮驻上海地区军事代表室,上海 200082)

摘 要:为了研究 V 型槽刻槽角度(θ)、刻槽长度(L)和刻槽深度(H)对半预制破片 PELE(HF-PELE)弹丸毁伤性能的影响,运用 ANSYS/LS-DYNA 有限元软件数值模拟了 HF-PELE 弹丸侵彻 4340 均质钢靶过程。在分析 V 型槽刻槽角度对 HF-PELE 弹丸毁伤性 能影响的基础上,以 V 型槽 θ、L、H 为变量,以破片径向速度为目标函数值,应用正交优化获得了 HF-PELE 弹丸 V 型槽结构参数的 最优组合: θ=40°、L =8 mm、H = 3.5 mm,此时,弹丸的破片最大径向速度最高,为 161.82 m·s⁻¹。结果表明:在 HF-PELE 弹丸 结构参数中,H 对破片的最大径向速度影响最大,θ 次之,L 最小。

关键词:爆炸力学;半预制破片 PELE(HF-PELE)弹丸; V 型槽;毁伤性能;最大径向速度

中图分类号: TJ413 _____ 文献标志码: A

DOI: 10.3969/j.issn.1006-9941.2014.02.020

1 引 言

横向效应增强型弹丸(PELE, Penetrator with Enhanced Lateral Efficiency),是一种基于新型毁伤机 理的无引信、无装药的新概念弹药,它由高密度外层壳 体和壳体内低密度惰性填充材料组成,具有良好的穿 甲性能^[1]。目前,PELE的研究主要集中在针对填充材 料^[2-3]、弹靶参数^[4-5]、着靶参数^[6]对其横向效应发挥 的影响分析方面,而对通过结构改进提高后效毁伤性 能研究的较少。

为了进一步提高 PELE 弹丸的后效毁伤性能,文献 [7]提出了半预制破片 PELE 弹丸概念(HF-PELE 弹丸), 即通过在弹丸壳体表面设计 V 型槽,使 PELE 弹丸在侵彻 过程中径向膨胀更剧烈,横向效应更明显,壳体更易碎裂 形成大量具有较高轴向剩余速度和径向飞散速度的破 片,从而大大提高 PELE 弹丸后效毁伤性能。本研究应 用有限元软件 ANSYS/LS-DYNA 对影响 HF-PELE 弹丸 毁伤性能的 V 型槽刻槽角度、刻槽长度、刻槽深度进行 了正交优化设计,获得了结构参数的影响规律和最优结 构设计参数,可为 HF-PELE 弹丸的设计提供参考。

收稿日期: 2013-05-22; 修回日期: 2013-10-30

2 计算模型

研究设计的 HF-PELE 弹丸结构简图如图 1 所示。

数值模拟时,HF-PELE 弹丸壳体选用高密度 4340 钢,尺寸为 Φ35 mm×150 mm,底厚为 10 mm,采用 JOHNSON_COOK 材料模型,V型槽刻槽长度为 10 mm,刻槽深度为 3.5 mm; 弹芯选用低密度尼龙 材料,尺寸 Φ26 mm×140 mm,采用 PLASTIC_KINE-MATIC 材料模型; 靶板为 4340 均质钢靶,尺寸为 200 mm×200 mm×30 mm,采用 JOHNSON_COOK 材料模型; 弹丸初速为 1200 m·s⁻¹,具体材料参数见 表 1^[7]。

基金项目:国家自然科学基金资助(51175481),山西省高等学校科技 创新项目(2013131)

作者简介: 尹建平(1975-),男,博士,教授,主要从事弹药高效毁伤技 术研究。e-mail: yjp123@ nuc. edu. cn

表 1	ΗF	-PELE 弹丸壳体、弹芯及靶板材料参数
Table	1	Parameters of half-premade fragmented PELE

materials	ho/g · cm ⁻³	E/GPa	μ	
jacket	7.85	210	0.22	
filling	1.14	2.83	0.40	
target	7.85	210	0.22	

Note: *E* is the modulus of elasticity, μ is the poisson ratio.

2 HF-PELE 弹丸毁伤性能分析

为分析 V 型槽刻槽角度对 HF-PELE 弹丸毁伤性 能的影响,利用 ANSYS/LS-DYNA 有限元软件分析了 不同 V 型槽刻槽角度(2°、4°和 8°)下,HF-PELE 弹丸 侵彻钢靶的毁伤性能,不同角度 V 型槽结构示意图如 图 2 所示。

图2 不同刻槽角度的 V 型槽

Fig. 2 V-shaped cavities with different angles

图 3 为采用不同 V 型槽刻槽角度时,HF-PELE 弹丸 侵彻钢靶形成的破片径向速度 v,随时间 t 变化的规律。

图 3 不同 V 型槽角度时破片径向速度随时间变化规律 Fig. 3 Curves of radial velocity for fragment vs time with different V-shaped cavity angles

由图 3 可知,随着 V 型槽刻槽角度的增大, HF-PELE弹丸侵彻钢靶形成的破片径向速度逐渐降低,当 V 型槽刻槽角度为 2°时,破片径向速度最大。 随着时间的增大,不同 V 型槽刻槽角度产生的破片, 其径向速度均先增大后减小,最后趋于稳定。当时间 小于150 μs 时,不同 V 型槽刻槽角度产生的破片径向 速度相差较小;当时间大于150 μs 时,随着时间的增 加,不同 V 型槽刻槽角度产生的破片,其径向速度先 减小,后在400 μs 左右逐渐趋于稳定。另外,当 HF-PELE弹丸的 V 型槽刻槽角度设计为4°和8°时,壳 体碎裂程度更完全,因此其破片径向速度先于 V 型槽 角度为2°时达到最大;但随着碎裂过程的继续进行, 破片的径向动能逐渐消耗,致其最大破片径向速度有 所降低,最终趋于稳定。

图 4 为破片径向速度趋于稳定时,即 400 μs 时,不同 V 型槽角度时 HF-PELE 弹丸侵彻钢靶形成的破片。

图 4 不同 V 型槽角度时 HF-PELE 弹丸侵彻钢靶所形成破片 Fig. 4 Fragment by HF-PELE penetrating steel target with different V-shaped cavity angles

由图 4 可以看出,不同 V 型槽刻槽角度的 HF-PELE 弹丸壳体碎裂程度、产生破片数量及大小存在较大差 别。当刻槽角度为 2°时,弹丸壳体碎裂面积大,碎裂 产生的破片数量多,破片质量较大,散布均匀;随着 V 型槽角度的增加,壳体碎裂程度降低,形成的破片数量 逐渐减少,破片质量降低,弹丸后效毁伤性能减弱。

3 PELE 毁伤性能影响因素正交优化设计

正交优化设计是在传统专业设计的基础上发展起来的,以统计的方法定量分析各种参数组合与目标特性之间的关系,从而求出最佳参数组合的一种方法^[8-9]。本研究应用正交优化设计方法对影响 HF-PELE 弹丸 毁伤性能的因素: V 型槽刻槽角度 θ 、刻槽长度 L、刻槽深度 H进行分析, V 型槽角度取 2°、4°和 8°, 刻槽长度 度取 6,8,10 mm, 刻槽深度取 1.5,2.5,3.5 mm, 正 交优化设计因素水平表如表 2 所示。

对于 HF-PELE 弹丸毁伤性能,破片的最大径向速 度能较好地反映破片的速度均值和速度趋势,因此将 破片最大径向速度 v_{r,max}(m·s⁻¹)作为优化目标。由

含能材料

于该优化为三因素三水平设计,选用 L₉(3⁴)正交表, 根据 HF-PELE 弹丸毁伤性能影响因素的具体参数,设 计了三因素三水平的正交设计仿真方案,各因素水平 组合如表 3 所示,数值仿真结果如图 5 所示。

表2 V型槽正交设计因素水平表

Table 2Factors and levels of orthogonal design of V-shapedcavities

No.	Α θ/ (°)	B L/mm	C H/mm
1	2	6	1.5
2	4	8	2.5
3	8	10	3.5
			011

表 3 正交设计仿真方案和结果

Table 3 Orthogonal design simulation scheme and results

No.	А	В	С	V _{r,max}
1	1	1	1	94.47
2	1	2	2	112.93
3	1	3	3	119.40
4	2	1	2	116.05
5	2	2	3	161.82
6	2	3	1	111.11
7	3	1	3	99.39
8	3	2	1	93.80
9	3	3	2	122.21
<i>K</i> ₁	108.93	103.30	99.79	
K_2	129.66	122.85	117.06	
K_3	105.13	117.58	126.87	
<i>k</i> ₁	36.31	34.43	33.26	
k_2	43.22	40.95	39.02	
k_3	35.04	39.19	42.29	
R	8.18	6.52	9.03	

从表3可以看出,在9个仿真方案中,第5号方案 得到的破片最大径向速度最大。初步认为, A₂B₂C₃为 较优组合。

再通过对 k_1 、 k_2 、 k_3 分析,确定各因素的优水平, 确定最优组合。由表 3 分析可知,对于因素 1 (V型 槽刻槽角度): $k_{21} > k_{11} > k_{31}$,因此 V型槽刻槽角度取 4°为最佳水平;对于因素 2 (V型槽刻槽长度): $k_{22} > k_{32} > k_{12}$,因此刻槽长度取 8 mm 为最佳水平;对于因 素 3 (V型槽刻槽深度): $k_{33} > k_{23} > k_{13}$,因此刻槽深度 取 3.5 mm 为最佳水平。

最后根据极差(R)大小,判断因素的主次影响顺 序。由表3可知, $R_c > R_A > R_B$,因此,V型槽刻槽深度对 HF-PELE 弹丸破片径向速度影响程度最大,V型槽刻 槽角度次之,V型槽刻槽长度的影响最小。

Fig. 5 Results of different orthogonal scheme

因此,综合分析,当 HF-PELE 弹丸结构参数取最佳 组合方案 A₂ B₂ C₃ 时,即 V 型槽刻槽角度为 4°、刻槽长 度为 8 mm、槽深度为 3.5 mm 时,HF-PELE 弹丸破片 径向速度值最大,正好为第五次仿真结果。图 6 所示 为 HF-PELE 弹丸不同正交优化方案下数值仿真获得 的破片径向速度变化规律。由此可以看出,HF-PELE 弹丸 V 型刻槽参数不同,其对产生的破片径向速度影 响程度也不尽相同;但破片径向速度随时间的变化规 律均呈现先增大后减小、最后趋于稳定的规律。

图6 不同正交优化方案的破片径向速度

Fig. 6 The radial velocity of different orthogonal scheme

4 结 论

运用有限元软件 ANSYS/LS-DYNA 对影响 HF-PELE弹丸毁伤性能的 V 型槽角度进行了数值模拟 研究,并对影响 HF-PELE 弹丸毁伤性能的主要因素 V 型槽角度、刻槽长度及刻槽深度进行了正交优化分析, 结果表明:

(1)对于不同 V 型槽刻槽角度,当 V 型槽刻槽角 度为 2°时,弹丸壳体碎裂面积最大,碎裂产生的破片 数量多,破片质量相对较大,破片径向速度最大, HF-PELE弹丸毁伤性能最佳;

(2) 对于本研究设计的 HF-PELE 弹丸,当 V 型槽 刻槽角度为 4°、刻槽长度为 8 mm、刻槽深度为 3.5 mm 时,弹丸的破片最大径向速度最大(162.81 m · s⁻¹),可 对靶后造成更大面积的毁伤;

(3) 在结构参数对 HF-PELE 弹丸毁伤性能影响 的正交优化分析中,V 型槽刻槽深度对弹丸破片的最 大径向速度影响最大,V 型槽刻槽角度次之,刻槽长度 影响最小。

参考文献:

[1] 朱建生. 横向效应增强型侵彻体作用机理研究[D]. 南京: 南京 理工大学, 2008.

ZHU Jian-sheng. Function mechanism study of penetrator with enhanced lateral efficiency[D]. Nanjing: Nanjing University of Science and Technology,2008.

[2] Paulus G, Schirm V. Impact behavior of PELE projectiles perfora-

ting thin target plates [C] // International Journal of Impact Engineering 33 , 2006 : 566–579 .

- [3] Paulus G, Chanteret P. Y, Wollmann E. PELE: A new penetrator-concept for the generation of lateral effects [C] // 21th International Symposium on Ballistics, Adelaide, Australia, 19 – 23 April, 2004:104–110.
- [4] Stephan Kerk. PELE The Future Ammunition Concept[C] // 21th International Symposium on Ballistics, Adelaide, Australia, 2004: 1134-1144.
- [5] Bless S, Pedersen B. PELE at hypervelocity [C] // 26th International Symposium on Ballistic. Miami, Florida, USA, 12-16 September, 2011; 209-211.
- [6] 朱建生,赵国志,杜忠华,等.着靶速度对 PELE 效应的影响[J]. 力学与实践,2007,29(5):12-16.
 ZHU Jian-sheng, ZHAO Guo-zhi, DU Zhong-hua, et al. The influence of impact velocity on the penetrator with enhanced lateral efficiency[J]. *Mechanics in Engineering*, 2007, 29(5): 12-16.
- [7] 张洪成, 尹建平, 王志军. 半预制破片 PELE 弹丸性能的数值分析
 [J]. 兵器材料科学与工程,2013,36(1):104-107.
 ZHANG Hong-cheng, YIN Jian-ping, WANG Zhi-jun. Numerical study on the damage efficiency of half-premade fragmented
 PELE[J]. Ordnance Material Science and Engineering, 2013, 36 (1):104-107.
- [8] 尹建平,付璐,王志军. 网栅切割式多爆炸成型弹丸战斗部正交 优化设计[J]. 弹箭与制导学报,2012,32(2):69-72.
 YIN Jian-ping, FU Lu, WANG Zhi-jun. Orthogonal optimization design of case parameters for intelligent mine[J]. *Journal of Projectiles, Rockets, Missiles and Guidance*,2012,32(2):69-72.
- [9] 陈奎,李伟兵,王晓鸣,等.双模战斗部结构正交优化设计[J]. 含能材料,2013,21(1):80-84.
 CHEN Kui, LI Wei-bing, WANG Xiao-ming, et al. Orthogonal design configuration parameters of dual mode warhead[J]. Chinese Journal of Energetic Material(Hanneng Cailiao), 2013,21 (1):80-84.

Influence of Structure Parameters on Damage Efficiency of Half-premade Fragmented PELE

Document code: A

YIN Jian-ping¹, LIU Tong-xin¹, ZHANG Hong-cheng², JIAN Qiu-feng³, YOU Mei⁴

(1. School of Mechatronic Engineering, North University of China, Taiyuan 030051, China; 2. Chongqing Hongyu Precision Industry Co. Ltd, Chongqing 402760, China; 3. Shanghai Institute of Space-Power Source, Shanghai 200233, China; 4. The Second Artillery Military Resentative Room in Shanghai, 200082, China)

Abstract: In order to study the influence of V-shaped cavity degree(θ), length(L) and depth(H) on the damage efficiency of halfpremade fragmented Penetrator with Enhanced Lateral Efficiency (HF-PELE), numerical simulations of HF-PELE penetrating 4340 steel were carried out by ANSYS/LS-DYNA. Based on the influence of V-shaped cavity degree on damage efficiency of HF-PELE, the optimized structure parameters were acquired by orthogonal test with θ , L and H as variables and maximum radial velocity ($v_{r,max}$) as the objective function: $\theta = 40^{\circ}$, L = 8mm, H = 3.5mm and $v_{r,max} = 161.82$ m \cdot s⁻¹. Results indicate that the V-shaped cavity depth makes a big difference on the damage efficiency of PELE, the V-shaped cavity degree follows behind, and the V-shaped cavity length's is minimum.

Key words: explosive mechanics; half-premade fragmented penetrator with enhanced lateral efficiency (HF-PELE); V-shaped cavity; damage efficiency; maximum radial velocity

CLC number: TJ413

DOI: 10.3969/j.issn.1006-9941.2014.02.020