双(2,2,2-三硝基乙基)胺的晶体形貌预测及控制

1 引 言

目前, 高氯酸铵 (AP) 作为氧化剂在固体推进剂领域具有广泛的应用, 然而 AP 是固体推进剂燃烧产生高能高胚胎热的根源, 因此, 近年来, 研究人员一直试图研发出一种具有较高稳定、生成氢和有效氧含量, 且不含氢原子的新型高能氧化剂, 用于取代当前广泛使用的 AP

本研究制备了 BTNA, 表征了它的结构, 从 BTNA 晶体的单晶结构解出, 采用 Materials Studio Modeling 6.0 软件中的生长形态 (Growth Morphology) 法模拟了其可能存在的晶体形态和结晶习性, 决定其形态学上重要的生长形态及其表面结构, 预测了可能的溶剂分子和 BTNA 主要生长面之间的相互作用, 为 BTNA 溶液结晶过程中的选择的优化和得到形貌规整, 长径比较小的结晶产品提供理论依据。并采用具有极性的二氯甲烷重结晶 BTNA, 得到重结晶前后的扫描电镜照片, 和理论预测结果进行对比。
分析仪进行测试。

纯度分析采用美国 Water 公司产 2695 型高效液相色谱仪（HPLC）进行测试。

2.2 BTNA 的制备及表征

按照文献方法[7, 9-11] 合成 BTNA。路线见Scheme 1。

![Scheme 1](image)

m. p. 116.4 ℃ (DSC), 纯度 99.98% (HPLC), FT-IR (KBr, ν/cm⁻¹): 3375, 2989, 2947, 2900, 1596, 1481, 1444, 1431, 1399, 1376, 1340, 1307, 1259, 1155, 1132, 1047, 1020, 885, 872, 855, 807, 793, 741, 660, 644. 元素分析 (%): C₆H₅N₂O₂, 实测值 C 14.49, H 1.36, N 28.59; 理论值 C 13.99, H 1.46, N 28.57。

3 BTNA 的形貌预测

3.1 计算方法

生长形态 (Growth Morphology) 方法定义晶层能

\(E_{\text{disc}} \) 为生长出一层厚度为 \(d_{\text{si}} \) 的晶片所释放出的能量，

而附着能 \(E_{\text{ad}} \) 为这层晶片附着在一块正在生长的晶体表面 (h k l) 时所释放出来的能量，二者之和等于该晶体的晶格能 \(E_{\text{g}} \)，具有最低附着能的晶面生长速率最慢，在形态学具有最高的重要性。即 \(D_{\text{hkl}} \propto R_{\text{hkl}} \propto E_{\text{ad}} \)。

其中 \(D_{\text{hkl}} \) 为晶面到晶体中心的距离, \(R_{\text{hkl}} \) 为晶面的线性生长速率 [12-15]。

3.2 计算结果

通过 Growth Morphology 方法计算得到的 BTNA 晶形如图 1 所示，稳定晶面的参数如表 1 所示。

由图 1 和表 1 可知, BTNA 晶形接近棱形, 其长径比值为 1.446。由 (002), (102), (111), (020), (200), (021) 晶面及其对称晶面围合而成。在其晶体中, 多重度为 8 的 (111) 晶面的表面面积占有最大的百分比, 为 54.44%, 多重度为 4 的 (102) 晶面的表面面积占总面积的 22.31%, 多重度为 2 的 (002) 晶面的表面面积占总面积的 11.51%, 这几个面是影响晶体晶形最重要的面。由于 Growth Morphology 模拟的是真空条件下晶体生长后的形态, 没有考虑晶体生长过程中溶剂的粘附和搅拌的剪切作用对晶体生长的影响, 因此与实验结果存在一定的差别。

附着的大小表征材料中原子间所成键的强弱, 晶面附着能越差, 生长速率越快。由表 1 中面心距离及附着能数据可以看出 BTNA 在 (020) (102) (201) 晶面方向的生长速度明显快于 (002) (102) (111) 晶面。

![图 1](image)

Fig. 1 Morphology of BTNA calculated by Growth Morphology

表 1 BTNA 稳定晶面参数

<table>
<thead>
<tr>
<th>hkl</th>
<th>multiplicity</th>
<th>distance /Å</th>
<th>(p_1) /%</th>
<th>(p_2) /%</th>
<th>(E_{\text{ad}}) /kJ/(mol/unit cell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(002)</td>
<td>2</td>
<td>126.49</td>
<td>5.075</td>
<td>11.51</td>
<td>-126.49</td>
</tr>
<tr>
<td>(102)</td>
<td>4</td>
<td>129.90</td>
<td>5.38</td>
<td>22.31</td>
<td>-129.90</td>
</tr>
<tr>
<td>(111)</td>
<td>8</td>
<td>141.95</td>
<td>6.81</td>
<td>54.44</td>
<td>-141.95</td>
</tr>
<tr>
<td>(020)</td>
<td>2</td>
<td>159.49</td>
<td>3.26</td>
<td>6.52</td>
<td>-159.49</td>
</tr>
<tr>
<td>(200)</td>
<td>2</td>
<td>172.35</td>
<td>2.59</td>
<td>5.18</td>
<td>-172.35</td>
</tr>
<tr>
<td>(021)</td>
<td>4</td>
<td>175.79</td>
<td>0.01</td>
<td>0.04</td>
<td>-175.79</td>
</tr>
</tbody>
</table>

Note: \(p_1 \) is the percentage of a crystal face surface area in the total habit surface area; \(p_2 \) is the percentage of all symmetry crystal face surface area in the total habit surface area; \(E_{\text{ad}} \) is the attachment energy.

3.3 晶面结构分析

在 BTNA 各生长面上由于 BTNA 分子的构象，分子间距离不同，各溶剂与不同晶面的相互作用能不同，会引起晶面相对生长速率的变化，进而影响和改变晶体的生长形态。

图 2 为 BTNA 重要生长晶面的超晶胞结构图。从图 2 可以看出, 晶面 (111) 上有几乎垂直晶面的强极性硝基基团显露并且显露的氧原子数目最多, 在所有稳定晶面中极性最强, 为强极性晶面。晶面 (002)、(102) 及 (020) 上也有几乎垂直晶面的硝基基团显露, 其
亲质子基团的密度较(111)晶面有所减少,为极性晶面,三种晶面的极性大小顺序为 (002) > (102) > (020)。 (002)、(021)晶面也有硝基上的氧原子,密
度与前面三种晶面的接近,但硝基显露的方向与晶面不垂直,极性稍弱,根据显露的氨原子数目显示二者极性大小顺序为(200) > (021)。因此,在极性溶剂中,(111)晶面与溶剂分子可发生强的氢键相互作用,使溶剂过程变得困难,从而使晶面生长速率大大降低而成为形态学上最重要的晶面。(002)、(102)及(020)晶面的生长速率可能会有不同程度的降低,从而增加其在晶体最终形态中的显露面。(200)、(021)晶面的生长速率降低导致其在晶体最终形态中的比例减小。而在非极性或弱极性溶剂中,弱极性晶面的生长可能会受到抑制而增加显露面的面积比例。由此可以预测可能的溶剂与晶面的相互作用,为 BTNA 溶液结晶过程中溶剂的选择提供理论依据。

用下,弱极性晶面的生长受到的抑制作用更大从而增加显露面的面积比例,进而缩短快生长面和慢生长面之间生长速率的差距,可能使晶体的长径比减小。因此采用弱极性溶剂二氯甲烷对 BTNA 进行重结晶,对重结晶前后的样品进行扫描电子显微镜测试(图 3),并和理论预测结果进行对比。

图 3 BTNA 的扫描电镜照片
Fig. 3 Scanning electron micrographs of BTNA

由图 3 可以看出,直接制备的 BTNA(图 3a)为不规则的长条状且边缘有毛刺,这是由于直接制备的 BTNA 从水中结晶析出,水为极性溶剂,在极性溶剂的作用下,极性晶面的生长速率更快,从而使快生长面和慢生长面的生长速率的差距增大。在采用弱极性溶剂二氯甲烷对 BTNA 进行重结晶后(图 3b),晶体形貌规则化,长径比变小,实验结果与理论预测结果具有一致性。

5 结 论

(1) 按文献方法,以 4,6-二羟基-嘧啶为原料合成出 BTNA,并用红外、元素分析表征了其结构。
(2) 采用 Growth Morphology 方法拟合了 BTNA 的晶形,发现 BTNA 晶形接近棱形。对晶面的结构分析发现,晶面 (111) 为极性晶面,晶面 (002)、(102) 及 (020) 三种晶面为极性晶面, (200)、(021) 晶面为弱极性晶面。
(3) 从晶面极性出发定性预测溶剂极性对 BTNA 晶体形貌的影响。在极性溶剂中,(111) 晶面将成为形态学上最重要的晶面。(002)、(102) 及 (020) 晶面的显露面将增加。(200)、(021) 晶面的重要性降低。而在非极性或弱极性溶剂中,弱极性晶面的生长可能会受到抑制而增加显露面的面积比例。
(4) 采用二氯甲烷重结晶 BTNA 后晶体形貌规则化,长径比变小。表明在弱极性溶剂的结晶环境下,缩短了快生长面和慢生长面之间生长速率的差距。实验结果验证了理论预测的正确性。
Prediction and Control of Crystal Morphology of BTNA

REN Xiao-ting1, DU Tao1, HE Jin-xuan1, LU Yan-hua1, GUO Ying-yuan1, DING Ning1, LEI Qing1, YE Dan-yang1

1. Institute of Aerospace Chemotechnology, Xiangyang 441003, China; 2. Hubei Hangpeng Chemical Power Technology Co., Ltd., Xiangyang 441003, China

Abstract: Bis(2,2,2-trinitroethyl) amine (BTNA) was synthesized according to literatures and characterized by elemental analysis, infrared radiation and differential scanning calorimetry. Using Growth Morphology methods contained in Morphology module of Materials Studio 6.0, the crystal morphology and crystallization behavior of BTNA were calculated, and the relationship between the structures of important crystal faces and media of crystallization were analyzed. Theoretical research shows that the face (111) is the most important crystal surface if crystallization was carried out in the solvents with strong polarity. The ratio of appearance area of (002), (102) and (020) increases, and the importance of faces (200) and (021) decreases. While the importance of weak polar surface will increase in non-polar or weak polar solvents. By recrystallizing BTNA from dichloromethane (weak polar solvent), it is found that the crystalloid is more uniform and the aspect ratio is smaller compared with that from water, which indicates that the experimental result is consistent with the simulation ones.

Key words: bis(2,2,2-trinitroethyl) amine (BTNA); computational simulation; crystal facet; morphology prediction

CLC number: TJ55; O64
Document code: A

DOI: 10.11943/j.issn.1006-9941.2015.08.005