文章编号:1006-9941(2016)10-1011-06

超声强化铁碳微电解处理硝基苯废水

余丽胜^{1,2},焦纬洲^{1,2},刘有智^{1,2},李苏霖^{1,2},李傲雯^{1,2},张敏^{1,2} (1. 中北大学山西省超重力化工工程技术研究中心,山西太原 030051;2. 超重力化工过程山西省重点实验室,山西太原 030051)

摘 要:针对铁碳微电解处理有机废水时铁碳填料易钝化、难连续可用性的问题,采用超声波(US)-零价铁/活性炭(Fe[°]/GAC)微电解技术降解硝基苯废水。考察了铁碳填料连续使用性,考察了 Fe[°]剂量、GAC 剂量、废水初始 pH 值对 US-Fe[°]/GAC 降解硝基苯 的影响规律。结果表明:不更换填料时,US-Fe[°]/GAC 连续处理4 批相同废水的硝基苯去除率均在 90% 左右;而在 Fe[°]/GAC 处理 下,4 次硝基苯去除率依次为 48%、36%、25%、17%。超声不仅维持了填料高活性使其能被连续使用,有效提高了 Fe[°]/GAC 对硝基苯去除率。得到降解硝基苯的适宜操作条件为:Fe[°]剂量 20 g·L⁻¹,GAC 剂量 10 g·L⁻¹,废水初始 pH 为 4。在此条件下,反应 80 min,硝基苯的去除率可达 93%,出水的可生化系数 BOD₅/COD_{cr}为 0.32,能满足生化处理要求。

关键词:超声波;微电解;硝基苯;零价铁;活性炭

中图分类号:TJ55;X703.1

文献标志码:A

DOI: 10.11943/j.issn.1006-9941.2016.10.016

1 引 言

硝基苯类化合物是重要的含能材料,广泛应用于 炸药、燃料、石油化工等行业,在火炸药生产过程产生 的废水中含有多种硝基苯类化合物,包括地恩梯 (DNT)、梯恩梯(TNT)、硝基苯(NB)等^[1]。这类物质 常具有强烈致癌、致畸、致突变等危害,已被我国列为 优先控制污染物^[2]。硝基的强吸电子作用使苯环钝 化,所以硝基苯类化合物化学性质稳定,用传统化学 (Fenton 法、臭氧氧化法等)或生物法难降解^[3]。研究 表明^[4],铁碳微电解法可有效将苯环上的硝基还原为 供电子基-胺基,活化苯环,使之易降解。其原理是利 用铁屑(Fe[°])和活性炭(Granular Active Carbon, GAC)组成微型原电池,GAC 将 Fe[°]上的电子转移至 其表面上的 H⁺生成强还原剂-活性[H],还原有机污 染物^[5-6]。

Lai 等^[7]研究表明在铁碳微电解(Fe⁰/GAC)运行

応稿日期・	2016-03-16	· 修回日期 ·	2016-04-20

基金项目:国家自然科学基金资助项目(21206153),山西省优秀青年基金项目(2014021007),山西省高等学校创新人才支持计划资助项目(201316)

过程中,铁表面易生成氧化膜(主要成分为 Fe₂O₃、 Fe₃O₄) 而被包覆, 阻碍了微电解反应。此外, 随着微 电解的进行,废水 pH 逐渐升高,促使溶液中的 Fe²⁺、 Fe³⁺水解生成氢氧化亚铁和氢氧化铁,吸附溶液中异 电荷微粒形成稳定絮凝物并覆盖填料表面有效反应位 点,使填料钝化失活^[8-9]。Li 等^[8]研究表明酸洗可去 除铁碳表面杂质使填料再生,但会产生新废水。周作 明等^[10]采用超声(Ultrasound, US)协同微电解法降解 硝基苯废水,研究发现超声能有效防止铁屑表面发生 钝化。(Liu 等^[11] 和 Zhou 等^[12]的研究均发现超声可 强化铁碳微电解处理有机废水的效率。强化机制主要 表现在两个方面:(1)超声可有效清除铁碳填料表面 的氧化覆盖层或沉积物,使填料表面反应活性位点原 位再生^[13-14];(2)超声的空化效应导致液体紊流,强 化传质,提高铁碳微电解反应速率^[15-16]。目前,超声 协同铁碳微电解处理难降解有机废水的研究较少,且 并未考察超声的介入是否会造成各操作条件(如铁碳 剂量、pH等)对铁碳微电解影响规律的改变。另外, 在超声件下,铁碳填料能否连续多次使用对铁碳微电 解工艺处理废水的连续化操作尤为重要,但此类研究 也鲜有报道。

为更好了解超声-铁碳微电解技术(US-Fe[°]/GAC)降解硝基苯废水的特性,本研究采用该技术处理硝基苯废水,旨在探讨:(1)超声是否可使铁碳填料 在硝基苯废水体系中再生,并能被多次连续使用;(2)

1011

作者简介: 余丽胜(1991-), 女, 硕士研究生, 主要从事铁碳微电解技术在火 炸药废水处理方面的应用研究。e-mail: yulisheng2014@126.com 通信联系人: 焦纬洲(1981-), 男, 教授, 主要从事超重力技术在废水处

理方面的应用研究。e-mail: jwz0306@126.com

对比各操作条件(包括铁剂量、活性炭剂量、pH)对超 声-铁碳微电解和铁碳微电解降解硝基苯影响规律的 差异。

2 实验部分

2.1 实验材料

硝基苯,分析纯,天津市天力化学试剂有限公司; 活性炭,分析纯,平均粒径1.25~2.5 mm,天津市北辰 方正试剂厂;铸铁废铁屑,平均粒径2.5~4.0 mm, 山西省超重力化工工程技术研究中心机械加工废料,

本研究所用硝基苯模拟废水均由硝基苯与去离子 水配制而成,硝基苯浓度为 $C_0 = 300 \text{ mg} \cdot 1^{-1}$, pH 值 由 1 mol · L^{-1} H₂SO₄和 1 mol · L^{-1} NaOH 溶液调节。 2.2 实验过程

2.2.1 材料预处理

废铁屑用 10% NaOH 溶液浸泡 30 min 除去表面油污,继而在 10% H₂SO₄溶液中浸泡 30 min 除去 铁表面的氧化层,用去离子水洗至中性,置于真空干燥 箱中烘干备用;活性炭用硝基苯溶液吸附饱和,再用 超声波处理活性炭至不再解吸为止。

2.2.2 实验方法

图 1 为实验装置图。实验所用超声设备为超声实 验装置 HN1000M(无锡市华能超声电子有限公司), 主要由超声发生器和超声传感器构成,频率为 20 kHz,输出功率可调(0~800 W),本研究均在 192 W的超声功率下进行实验。铁碳微电解反应器为 250 mL 石英杯。反应前,将预处理后的铁碳颗粒置于 反应器中,并倒入100 mL 浓度为300 mg・L⁻¹的硝基 苯模拟废水,加盖。然后,快速将反应器置于超声换能 器下方,使超声换能器从玻璃盖圆孔插入反应器内液 面下方 2 cm 处,开启超声发生器开始反应,反应时间 为 80 min,反应器温度采用恒温水浴锅控制在室温 20 ℃左右。反应结束后,取样测定硝基苯浓度 C_t。

图1 实验装置图

1—超声波换能器, 2—反应器, 3—恒温水浴锅, 4—超声发生器 **Fig.1** Equipment of experiment

1—ultrasonic transducer, 2—reactor, 3—thermostat water bath, 4—ultrasonic generator

2.3 分析方法

超声-铁碳微电解处理效果以硝基苯去除率表示。 硝基苯浓度采用 Ultimate 3000 HPLC(美国戴安科 技)测定。色谱柱: C_{18} 反相柱(250 mm×4.6 mm, 5 µm); 流动相:甲醇-水,体积比为 70:30; 流速: 0.9 mL・min⁻¹; 柱温: 20 ℃; 进样量: 20 µL。式 (1)为硝基苯去除率的计算公式。式中, C_0 和 C_1 分别 为铁碳微电解处理前后的硝基苯浓度。

$$\eta = \frac{C_0 - C_t}{C_0} \times 100\%$$
(1)

采用扫描电镜 KYKY3800(北京中科科仪股份有限公司)分析铁碳颗粒表面特征;废水 COD_{cr}采用GB/T 11914-1989 中重铬酸钾法测定,测定仪为 XJ-J(广东省医疗器械厂);BOD测定采用五日生化培养法,由 ET99724-6 测定仪(德国-哈纳科技)测定。

3 结果与讨论

3.1 US、Fe⁰/GAC、US-Fe⁰/GAC 对比

为探索铁碳填料的连续使用情况,本实验采用相 同批次的铁碳填料连续处理 4 批 100 mL 新鲜硝基苯 模拟废水(更换废水时,填料不作任何处理)。实验条 件: 硝基苯废水初始 pH 为 4, Fe^{0} 剂量 20 g · L⁻¹, GAC 剂量 20 g · L⁻¹。其中,单纯 Fe⁰/GAC 降解硝基 苯废水在100 r · min⁻¹的搅拌条件下进行,实验结果 见表1。由表1可见, US-Fe⁰/GAC对4批废水的硝 基苯去除率均在 90% 左右; Fe⁰/GAC 对 4 批废水的 硝基苯去除率依次为 48%、36%、25%、17%; 单纯 US 对硝基苯的去除率均不超过 12%; US-Fe⁰/GAC 对硝基苯去除率远高于 Fe⁰/GAC 和 US 对硝基苯去 除率的叠加值,故超声与铁碳微电解间存在明显协同 效应。此外, US-Fe⁰/GAC 连续 4 次运行期间, 硝基苯 的去除率始终保持在高水平;而单一的 Fe⁰/GAC 处 理效率随使用次数的增加而急剧降低,填料反应活性 逐渐衰弱。可见,超声的介入不仅大幅提高了铁碳微 电解降解硝基苯的效率,还使铁碳填料可连续使用。

在 US-Fe⁰/GAC 中,主要存在 3 种降解机制同步 降解硝基苯: (1)超声强化铁碳微电解反应将硝基苯 还原为苯胺^[10]; (2)超声在溶液中产生的自由基(如 ·OH 等)氧化降解硝基苯以及苯胺^[17]; (3)超声的 空化作用使有机分子发生热裂解反应而降解^[18]。由 表1可知,US-Fe⁰/GAC 处理后的 4 批硝基苯废水中 还原产物-苯胺的浓度较高,均在 170~180 mg·L⁻¹ 范围内,而理论计算可知 300 mg·L⁻¹硝基苯若全部 被还原可生成 227 mg · L⁻¹的苯胺^[14]。图 2 为上述 4 批US-Fe⁰/GAC 处理后的硝基苯废水进行 HPLC 检 测图谱。由图 2 同样可见, US-Fe⁰/GAC 降解硝基苯 的产物主要为苯胺,并伴有少量亚硝基苯、羟基苯胺等 还原 中间 产物。因此,在 US-Fe⁰/GAC 中,仍然是 Fe⁰/GAC 还原硝基苯的反应占主导,超声的介入主要 强化了 Fe⁰/GAC 还原硝基苯的反应过程。超声在溶 液中虽具有氧化降解有机物的能力以及迫使有机物热 裂解,但作用薄弱。

表1 4 次连续实验下硝基苯去除率和产物苯胺浓度 **Table 1** NB removal efficiency and aniline concentration of four continuous experiments

	NB removal efficiency/%			aniline	aniline concentration/mg $\cdot L^{-1}$		
times	US	Fe ⁰ /GAC	US-Fe ⁰ /GAC	US	Fe ⁰ /GAC	US-Fe ⁰ /GAC	
1	11	48	88	0	79	171	
2	10	36	91	0	52	177	
3	10	25	89	0	23	174	
4	9	17	92	0	14	179	

图 2 US-Fe⁰/GAC 处理后的 4 批硝基苯废水 HPLC 图 a--羟基苯胺, b--苯胺, c--硝基苯, d-亚硝基苯 Fig. 2 HPLC of 4 batch NB wastewater after US-Fe⁰/GAC treatment

 $a-phenylhydroxylamine\,,\,b-aniline\,,\,c-nitrobenzene\,,$

d—nitrosobenzene

图 3 为 Fe[°]/GAC、US-Fe[°]/GAC 实验前后的铁碳 颗粒的 SEM 图。由图 3a,图 3b,图 3c 可发现,超声作 用后 Fe[°]表面(图 3b)与反应前(图 3a)的同样洁净, 然而其表面被腐蚀,呈片层状,十分粗糙,而 Fe[°]/GAC 作用后的 Fe[°]表面(图 3c)则被杂质所覆盖。图 3d, 图 3e,图 3f 为 GAC 的 SEM 图,由图可发现超声处理 后的 GAC 表面(图 3e)较反应前(图 3d)更洁净,而 Fe[°]/GAC 作用后的炭颗粒表面(图 3f)则被众多聚集 物所覆盖。分析原因: Fe⁰/GAC 还原降解硝基苯属 于表面还原反应,然而随着反应的进行,Fe⁰、GAC 逐 渐被覆盖,降低填料有效相际传质接触面积,阻碍了 Fe⁰/GAC 反应,因此,铁碳填料的反应活性随使用次数 的增加而降低。然而超声波在溶液中产生的空化效应, 可连续清洗铁碳表面覆盖物,使反应活性位点再生,并 继续用于铁碳微电解反应,实现铁碳填料连续使用。

图 3 Fe⁰和 GAC 的 SEM 图

Fig. 3 SEM images of Fe⁰ and GAC

3.2 Fe^o剂量对 Fe^o/GAC、US-Fe^o/GAC 的影响

固定硝基苯废水初始 pH 为 4,铁碳质量比为 1:1,研究了不同 Fe⁰剂量,对 US-Fe⁰/GAC、Fe⁰/GAC 降解硝基苯的影响。结果如图 4 所示。

由图 4 可见, US-Fe[°]/GAC 对硝基苯的去除率始终 显著高于 Fe[°]/GAC 的去除率。分析原因:随 Fe[°]剂量 增加,铁碳微电池数量也增加,电子传递链增多,从而提 高了单位时间内还原剂[H]的生成量,因此 US-Fe[°]/ GAC、Fe[°]/GAC 对硝基苯的去除率均呈上升趋势。此 外,超声一方面能连续更新铁碳填料表面^[19],增加相 际传质接触面积,另一方面又能造成液体稳流强化传 质^[20],加速硝基苯的还原反应,因此 US-Fe[°]/GAC 对 硝基苯去除率在 Fe^0 剂量 0~20 g·L⁻¹区间内的曲线 更为陡峭。

图 4 Fe^o剂量对 Fe^o/GAC、US-Fe^o/GAC 去除硝基苯的影响 Fig. 4 Effect of Fe^o dosage on NB removal efficiency by Fe^o/ GAC and US-Fe^o/GAC

由图 4 还可见,在 Fe[°]剂量 20~35 g・L⁻¹区间 内,US-Fe[°]/GAC 对硝基苯去除率的曲线骤然平坦且 硝基苯去除率始终在 90%以上,而 Fe[°]/GAC 则需过 度添加铁碳剂量才可提高硝基苯去除率。这是因为超 声作用下产生的铁碳总相际传质接触面积,已足够用 于废水中硝基苯的快速完全脱除,继续增加铁剂量则 可缩短达到硝基苯最高去除率的时间;对于单一 Fe[°]/GAC需投入过度量的铁碳,才可提供足够的铁碳 总相际传质接触面积。因此,超声的介入不仅提高了 Fe[°]/GAC 对硝基苯的去除率,还节省了大量铁碳资源。 选择 Fe[°]剂量 20 g·L⁻¹为 US-Fe[°]/GAC 适宜条件。

3.3 外加 GAC 剂量对 Fe⁰/GAC、US-Fe⁰/GAC 的影响

固定硝基苯废水初始 pH 为 4, Fe⁰剂量 20 g · L⁻¹, 研究了不同 GAC 剂量, 对 US-Fe⁰/GAC、Fe⁰/GAC 降 解硝基苯的影响,结果如图 5 所示。

图 5 GAC 剂量对 Fe[°]/GAC、US-Fe[°]/GAC 去除硝基苯的影响 Fig. 5 Effect of GAC dosage on NB removal efficiency by Fe[°]/GAC and US-Fe[°]/GAC

由图 5 可见, US-Fe⁰/GAC、Fe⁰/GAC 法对硝基苯

的去除率分别在 GAC 剂量为 10 g · L⁻¹、20 g · L⁻¹达 到峰值。分析原因为 GAC 增加,铁碳微电池数量随 之增加,硝基苯去除率增加;但 GAC 投加量过多硝基 苯去除率反而降低,因为 GAC 作为阴极材料接受并 转移电子至其表面所吸附的 H⁺以生成用于还原硝基 苯的[H],但[H]更易于形成H₂,当 GAC 过多时,有限 铁颗粒则被 GAC 层层包围,造成内部铁碳微电池新生 成的[H]向外扩散困难,同时外部硝基苯向内扩散困 难,在[H]与硝基苯发生反应之前,[H]就已发生湮灭 反应生成无作用H₂,最终表现为硝基苯去除率降低。

图 5 还显示,超声的介入使得 Fe⁰/GAC 对硝基苯 去除率的峰值提前。与单一 Fe⁰/GAC 相比,达到峰值 时,US-Fe⁰/GAC的GAC的用量降低了一倍。超声在 溶液中传播时,当其能量足够大时,则能够克服液体分 子间的相互作用力生成空化气泡^[21]。该气泡内因超 声做功而积聚极高能量形成高温高压氛围,水分子可 汽化而进入气泡内并热裂解生成·OH^[22]。随着气泡 的崩灭, · OH 被释放至周围环境中氧化降解有机分 子。GAC 粗糙多孔的特性使得空化气泡更易于在其 表面形成^[23]。因此,在超声环境下,当 GAC 较多时, 铁颗粒周围的活性炭量同步增加,空化气泡总量也急 剧增加,一方面阻碍了电极反应,另一方面气泡崩灭 后,电极周围的·OH局部浓度也同比增加,以至于 GAC 表面接受的电子以及新生成的还原剂 [H] 被 ·OH捕获灭活的几率也增加,降低硝基苯的还原速 率。故对于 US-Fe⁰/GAC,GAC 的剂量不宜过大。选 择 GAC 剂量 10 g · L⁻¹为 US-Fe⁰/GAC 适宜条件。

3.4 废水初始 pH 值对 Fe[®]/GAC、US-Fe[®]/GAC 的影响 固定 Fe[®]剂量 20 g ⋅ L⁻¹,GAC 剂量 10 g ⋅ L⁻¹,研 究了不同废水初始 pH 值对 US-Fe[®]/GAC、Fe[®]/GAC 降解硝基苯的影响,结果如图 6 所示。

图 6 废水初始 pH 对 Fe⁰/GAC、US-Fe⁰/GAC 去除硝基苯的 影响

Fig. 6 Effect of initial pH of wastewater on NB removal efficiency by Fe^0/GAC and US- Fe^0/GAC

含能材料

由图 6 可见, US-Fe[°]/GAC、Fe[°]/GAC 法对硝基苯 的去除率均随 pH 的增加而降低。分析原因:强还原 剂[H]的生成是以 H⁺作为铁碳微电池电子受体而生 成的, pH 越高, 单位时间内生成的[H]浓度则越低, 还原推动力越小, 从而降低硝基苯的去除率。

由图 6 还可见,在 pH 为 2~4 时, US-Fe⁰/GAC 对硝基苯的去除率从 100% 降至 93%, 而 Fe⁰/GAC 对硝基苯的去除率从 99% 急剧降至 48%。显然,超 声降低了 Fe^{0}/GAC 对 pH 值的依赖性,即使 pH 较高 时,超声也能大幅提高 Fe⁰/GAC 对硝基苯的去除率。 分析原因:铁碳微电解还原硝基苯属于表面还原反 应^[24],GAC 表面新生成的[H]如未能及时与硝基苯 或其他中间产物发生反应,则会快速发生湮灭反应生 成无作用 H₂。超声生成的空化气泡崩灭时,会对周围 溶液造成强大冲击力,使溶液紊流^[25],加速 H⁺、硝基 苯以及中间产物向铁碳表面的传质过程,增加单位时 间内[H]生成量的同时也增加了[H]与硝基苯的碰撞 几率。因此,在超声作用下,即使废水 pH 较高(如 pH =4),单位时间内生成的[H]浓度较低,硝基苯的去除 率仍然处于高水平。为节省酸耗,选择 pH = 4 为 US-Fe[°]/GAC 适宜条件,在此条件下,处理后废水的可 生化系数即五日生化需氧量/化学需氧量(BOD₅/ COD_{cr})为0.32,满足可生化处理要求(BOD₅/COD_{cr} $> 0.3)^{[26]}$

4 结 论

(1)在 US-Fe[°]/GAC 中,仍是 Fe[°]/GAC 还原硝基 苯反应占主导,超声的介入主要强化了 Fe[°]/GAC 对硝 基苯的还原反应。

(2)不更换填料, US-Fe[°]/GAC 连续处理 4 批废 水的硝基苯去除率均达到 90% 左右;而 Fe[°]/GAC 对 硝基苯的去除率, 始终低于 50%, 并随填料连续使用 次数 的 增加而逐渐降低。因此超声不仅可提高 Fe[°]/GAC对硝基苯的去除率,还能实现铁碳填料的再 生, 维持填料活性, 实现填料连续使用。

(3) 与单一 Fe[°]/GAC 相比, 超声的介入大幅降低 了 Fe[°]/GAC 的铁、碳投加量, 同时还减弱了 Fe[°]/GAC 对废水初始 pH 值的依赖性, 即使 pH 较高时, US-Fe[°]/GAC 对硝基苯的去除率也能保持在高水平。

(4) US-Fe⁰/GAC 处理浓度为 300 mg・L⁻¹ 硝基
 苯废水,较佳实验条件为: Fe⁰剂量 20 g・L⁻¹,GAC 剂
 量 10 g・L⁻¹,废水初始 pH 为4,反应时间 80 min,硝

基苯的去除率可达 93%,处理后废水的可生化系数 BOD₅/COD_{cr}为 0.32,满足可生化处理要求。

参考文献:

- [1] 郭亮,焦纬洲,刘有智,等.不同臭氧组合工艺处理含硝基苯类 化合物废水的实验研究[1].含能材料,2014,(5);702-708.
 GUO Liang, JIAO Wei-zhou, LIU You-zhi, et al. Treatment of nitrobenzene-containing wastewater using different combined processes with ozone[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2014, (5);702-708.
- [2] Jiao W Z, Liu Y Z, Liu W L, et al. Degradation of nitrobenzenecontaining wastewater with O₃ and H₂O₂ by high gravity technology[J]. *China Petroleum Processing & Petrochemical Technology*, 2013, 15(1): 85–94.
- [3] 俸志荣,焦纬洲,刘有智,等.超重力强化吹脱与 O₃/H₂O₂联合 处理含高浓度硝基苯废水[J].含能材料,2015,23(6):589-593.

FENG Zhi-rong, JIAO Wei-zhou, LIU You-zhi, et al. Combined treatment of air stripping-O₃ and H_2O_2 oxidation for high concentration nitrobenzene-containing wastewater enhanced by high gravity technology [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2015, 23(6): 589–593.

- [4] Agrawal A, Tratnyek P G. Reduction of nitro aromatic compounds by zero-valent iron metal[J]. Environmental Science & Technology, 1996, 30(1): 153-160.
- [5] Luo J H, Song G Yu, Liu J Y, et al. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface[J]. *Journal of Colloid and Interface Science*, 2014, 435: 21–25.
- [6] Ying D W, Peng J, Xu X Y, et al. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron [J]. *Journal of Hazardous Materials*, 2012, 229-230: 426-433.
- [7] Lai B, Zhou Y X, Yang P. Passivation of sponge iron and GAC in Fe⁰/GAC mixed-potential corrosion reactor[J]. Industrial & Engineering Chemistry Research, 2012, 51: 7777-7785.
- [8] Li M, Zou D L, Zou H C, et al. Degradation of nitrobenzene in simulated wastewater by iron-carbon micro-electrolysis packing [J]. Environmental Technology, 2011, 32(15): 1761–1766.
- [9] Cheng H F, Xu W P, Liu J L, et al. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis [J]. *Journal of Hazardous Materials*, 2007, 146(1-2): 385-392.
- [10] 周作明,李天鹏,董梅霞. 超声波对微电解处理硝基苯的协同效应研究[J].安全与环境学报,2010,10(1):38-41.
 ZHOU Zuo-ming, LI Tian-peng, DONG Mei-xia. Study on the synergistic effect of ultrasonic waves on the degradation of nitrobenzene through micro-electrolysis[J]. *Journal of Safety and Environment*, 2010, 10(1): 38-41.
- [11] Liu H N, Li G T, Qu J H, et al. Degradation of azo dye acid orange 7 in water by Fe⁰/granular activated carbon system in the presence of ultrasound [J]. *Journal of Hazardous Materials*, 2007, 144 (1-2): 180-186.
- [12] Zhou H M, Lü P, Shen Y Y, et al. Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon micro-electrolysis system and their degradation mechanism[J]. Water Research, 2013, 47 (10): 3514–3522.

- [13] Yan L, Wang X K, Chen B, et al. Degradation of Azo Dye C. I. Reactive Blue 194 in water by sponge iron in the presence of ultrasound [J]. Environmental Engineering Science, 2014, 31 (10): 541-547.
- [14] Hung H M , Hoffmann M R. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound[J]. *Environmental Science & Technology*, 2000, 34(9): 1758–1763.
- [15] Tsai Y J, Chou F C, Cheng T C. Coupled acidification and ultrasound with iron enhances nitrate reduction [J]. *Journal of Hazardous Materials*, 2009, 163(2–3): 743–747.
- [16] 陈岚, 史惠祥, 汪大翚, 等. 臭氧超声波联合降解除草剂 2,4-D (Ⅱ)降解路径的探讨[J]. 化工学报, 2004, 55(11): 1864-1868.
 CHEN Lan, SHI Hui-xiang, WANG Da-hui, et al. Degradation of 2,4-dichlorophoxyacetic acid by ozone with ultrasound (Ⅱ) degradation pathway[J]. CIESC Journal, 2004, 55(11): 1864-1868.
- [17] Suslick K S, Hammerton D A, Cline R E. The sonchemical hot spot[J]. Journal of the American Chemical Society, 1986, 108 (17): 5641-5642.
- [18] Sehgal C M, Wang S Y. Threshold intensities and kinetics of sonoreaction of thymine in aqueous solutions at low ultrasonic intensities[J]. *Journal of the American Chemical Society*, 1981, 103: 6606-6611.
- [19] Zhang H, Duan L, Zhang Y, et al. The use of ultrasound to enhance the decolorization of the C. I. Acid Orange 7 by zero-valent iron[J]. Dyes and Pigments, 2005, 65(1): 39–43.
- [20] Berberidoua C, Pouliosa I, Xekoukoulotakisb N P, et al. Sono-

lytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions [J]. Applied Catalysis B: Environmental, 2007, 74(1-2): 63–72.

- [21] Huang H M, Hoffmann M R. Kinetics and mechanism of the enhanced reductive degradation of CCl₄ by elemental iron in the presence of ultrasound [J]. *Environmental Science & Technology*, 1998, 32(19): 3011–3016.
- [22] Alegria A E, Lion Y, Kondo T, et al. Sonolysis of aqueous surfactant solutions. Probing the interfacial region of cavitation bubbles by spin trapping [J]. *The Journal of Chemical Physics*, 1989, 93(12): 4908-4913.
- [23] Hardcastle J L, Ball J C, Hong Q, et al. Sonoelectrochemical and sonochemical effects of cavitation: correlation with interfacial cavitation induced by 20 kHz ultrasound [J]. Ultrasonics Sonochemistry, 2000, 7(1): 7–14.
- [24] 俸志荣, 焦纬洲, 刘有智,等. 铁碳微电解处理含硝基苯废水
 [J]. 化工学报, 2015, 66(3): 1150-1155.
 FENG Zhi-rong, JIAO Wei-zhou, LIU You-zhi, et al. Treatment of nitrobenzene-containing wastewater by iron-carbon micro-electrolysis[J]. CIESC Journal, 2015, 66(3): 1150-1155.
- [25] Tyagi V K, Lo S L, Appels L, et al. Ultrasonic treatment of waste sludge: A review on mechanisms and applications [J]. Critical Reviews in Environmental Science and Technology, 2014, 44 (11): 1220-1288.
- [26] 王琨,汤利华,汪强林,等. 污水可生化性对污水处理效果影响的分析[J]. 工业用水与废水,2012,43(1):16-18.
 WANG Kun, TANG Li-hua, WANG Qiang-lin, et al. Analysis on effect of wastewater treatment affected by biodegradability
 [J]. Industrial Water & Wastewater, 2012, 43(1):16-18.

Treatment of Nitrobenzene Wastewater under Iron Carbon Micro-Electrolysis Enhanced by Ultrasound

YU Li-sheng^{1,2}, JIAO Wei-zhou^{1,2}, LIU You-zhi^{1,2}, LI Su-lin^{1,2}, LI Ao-wen^{1,2}, ZHANG Min^{1,2}

(1. Research Center of Shanxi Province for High Gravity Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; 2. Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, Taiyuan 030051, China)

Abstract: Aim at the problem of easily passivation and poorly continuous usability of iron and carbon packings in iron carbon micro-electrolysis treatment of organic wastewater, the ultrasound (US)-zero valent iron/granular active carbon (Fe^0/GAC) micro-electrolysis was used to degrade nitrobenzene wastewater. The continuous usability of Fe^0 and GAC was studied. The effect of Fe^0 dosage, GAC dosage and initial pH value of wastewater on nitrobenzene degradation by US- Fe^0/GAC were investigated. The results show that, when Fe^0/GAC is not changed, the removal efficiency of four batches of same nitrobenzene wastewater treated by US- Fe^0/GAC is all about 90%, whereas under Fe^0/GAC treatment, 4 times of nitrobenzene removal efficiencies are 48%, 36%, 25% and 17%, respectively. The ultrasound can not only maintain the high activety of iron and carbon packings to use them continuously, but also can effectively improve the removal efficiency of nitrobenzene treated by Fe^0/GAC . The suitable operating parameters of degrading nitrobenzene obtained are Fe^0 dosage 20 g $\cdot L^{-1}$, GAC dosage 10 g $\cdot L^{-1}$, initial pH = 4 for wastewater. Under these conditions, after 80 min, the removal efficiency of nitrobenzene reaches 93% and the biochemical coefficient BOD₅/COD_{cr} of effluent reaches 0.32, which can meet the requirement of biochemical treatment.

Key words: ultrasound; micro-electrolysis; nitrobenzene; zero valent iron; activated carbon

CLC number: TJ55; X703.1

Document code: A

e: A

含能材料

DOI: 10.11943/j.issn.1006-9941.2016.10.016