15.019.C'

文章编号:1006-9941(2017)07-0552-05

全氮材料基础性能理论研究:Ⅱ.生成焓预测

刘英哲1,来蔚鹏1,尉 涛1,葛忠学1,骆艳娇2,徐 涛2,尹世伟2 (1. 西安近代化学研究所 氟氮化工资源高效开发与利用国家重点实验室,陕西西安710065;2. 陕西师范大学,陕西

摘 要:为了准确预测全氮材料的生成焓,基于原子化反应,采用 B3PW91、B3P86、B3LYP、X3LYP、O3LYP、M052X、M062X、 M06HF、B2PLYP 9 种密度泛函分别对 52 种多氮化合物的气相生成焓进行了计算。通过与实验数据对比, 双杂化泛函 B2PLYP 的 平均绝对偏差最小,为 30.1 kJ·mol⁻¹,且优于 G4 方法,选择该泛函计算了 N₄(T_d)、N₆(D_{3b})、N₈(O_b)、N₁₀(D_{5b})及 N₁₂(D_{6b}) 5种全氮分子的气相生成焓,计算结果依次为756.4,1338.2,1878.5,2144.3,2787.0 kJ·mol⁻¹。

关键词:密度泛函;笼型结构;原子化反应;全氮材料、 中图分类号: TJ55

文献标志码:A

DOI: 10.11943/j.issn.1006-9941.2017.07.004

1 引 言

全氮材料具有能量高、无污染的优点,是潜在的新 型高能量密度材料^[1-5]。生成焓是评价全氮材料爆轰 性能的关键参数。对于稳定化合物,生成焓可由实验 方法测得,但全氮材料尚难以获得样品,导致生成焓无 法实测。因此,采用理论计算方法成为了获取全氮材 料生成焓的主要手段。然而,如何准确可靠地计算全 氮材料的生成焓仍然是一个难点。

目前,生成焓的计算方法主要有几下几种:(1)基 团加和法、半经验分子轨道法能直接而快速地给出生 成焓,但该类方法强烈依赖于参数的准确性,可靠性不 强,只能用于生成焓的估算;(2)从头算方法特别是高 水平理论方法如 QCISD(T), CCSD(T)等能够准确地 预测生成焓,但需要巨大的计算资源,只能用于小分 子; (3)以 Gn 及 CBS 为代表的混合方法具有很高的 计算精度,但同样需要较大的计算资源,通常只适用于 小分子体系; (4)密度泛函理论能够合理地预测生成 焓,且只需较少的计算资源,因此成为当前广泛使用的 热门方法,但计算结果强烈依赖于所使用的密度泛函。

本研究基于原子化反应,采用3类9种密度泛函分 别对 52 种多氮化合物的气相标准生成焓进行了计算, 通过比较计算值与实验值,筛选出计算精度最高的密度

收稿日期: 2016-08-18; 修回日期: 2017-01-12

基金项目:国家自然科学基金资助(21403162,21503160)

作者简介:刘英哲(1986-),男,博士,副研究员,主要从事含能材料计 算模拟研究。e-mail: liuyz_204@163.com

泛函,为全氮材料生成焓预测提供一种合理的方法。

2 计算方法

2.1 数据采集

采集多氮化合物的生成焓数据,包括唑、嗪、叠氮、 酯、烷、硝胺、苯胺、硝基胺、硝基苯、腈等52个分子, 气相生成焓实验数据取自 NIST 数据库,见表1。

2.2 生成焓计算

采用密度泛函理论 B3LYP/6-31G(d)^[6-7]方法对 52 个多氮化合物进行几何构型优化,经振动频率计算 确认所得构型为能量最优。然后,分别采用3类9种 不同的密度泛函方法进行生成焓计算,包括(1)单杂 化密度泛函 B3PW91^[8]、B3P86^[9]、B3LYP^[6-7]、 X3LYP^[10]和 O3LYP^[11]; (2) meta 杂化密度泛函 M052X、M062X 和 M06HF^[12]; (3) 双杂化密度泛函 B2PLYP^[13]。借助原子化反应计算生成焓,以气相分子 C_aH_bN_cO_d为例,在标准条件下,计算途径如图1所示。

图1 基于原子化反应计算生成焓示意图

Fig. 1 Schematic of atomization reaction route to calculate the enthalpy of formation

表1 52 个多氮化合物标准生成焓实验值与计算值偏差

 Table 1
 Experiment values and deviations of standard enthalpies of formation for 52 nitrogen-rich compounds

namo	formula	deviations										
name		B3PW91	B3P86	B3LYP	X3LYP	O3LYP	M052X	M062X	M06HF	B2PLYP	G4	experiment
imidazole	$C_3H_4N_2$	-55.2	-187.0	-24.3	-31.0	-33.9	-33.9	-27.2	-35.1	-22.2	-29.7	132.88
pyrazole	$C_3H_4N_2$	-59.0	-190.4	-26.8	-33.1	-39.3	-32.6	-24.3	-25.5	-24.7	-30.1	179.41
1,2,4-triazole	$C_2H_3N_3$	-51.0	-177.4	-31.4	-36.4	-30.1	-23.4	-18.4	-20.5	-20.1	-24.3	192.72
1 <i>H</i> -tetrazole	CH_2N_4	-36.0	-156.1	-26.8	-29.3	-17.2	5.4	17.1	17.2	5-6.3	-5.9	319.99
1-methyl-1 <i>H</i> -tetrazole	$C_2H_4N_4$	-62.3	-222.2	-46.9	-51.9	-42.7	-23.0	-20.1	-19.2	-32.6	-36.0	322.88
5-methyl-1 <i>H</i> -tetrazole	$C_2H_4N_4$	-52.7	-212.1	-34.3	-39.7	-33.1	-10.9	-7.1	5.9	-19.2	-23.0	280.70
1,5-dimethyl-1 <i>H</i> -tetrazole	$C_3H_6N_4$	-68.2	-267.8	-43.1	-51.5	-46.0	-29.7	-25.1	-20.9	-35.6	-44.4	273.22
2-methyl-2 <i>H</i> -tetrazole	$C_2H_4N_4$	-85.4	-245.2	-68.6	-74.1	-65.3	-46.0	-41.8	-40.6	-55.2	-57.3	328.40
2,5-dimethyl-1 <i>H</i> -tetrazole	$C_3H_6N_4$	-62.3	-261.1	-36.4	-44.4	-41.0	-22.2	-15.9	-10.9	-29.3	-35.1	251.21
1-aminotetrazole	CH_3N_5	71.5	-83.3	77.8	73.6	95.0	115.9	117.6	121.8	105.0	103.3	323.80
5-amino-1-methyl-1H-tetrazole	$C_2H_5N_5$	-55.2	-250.2	-40.6	-47.7	-28.0	-16.3	-10.9	-8.8	-20.1	-25.9	302.42
5-amino-2-methyl-2H-tetrazole	$C_2H_5N_5$	-71.5	-266.1	-55.6	-62.8	-44.8	-30.5	-22.6	-18.4	-36.4	-39.3	298.78
5-nitroaminotetrazole	$CH_2N_6O_2$	48.1	-149.4	73.2	67.8	75.7	132.2	126.4	205.9	110.9	108.8	252.00
4,4'-dinitrodifurazalyl ether	$C_4 N_6 O_7$	-136.0	-435.6	-39.3	-50.6	-90.4	36.4	-9.6	236.4	-19.2	-68.2	422.79
trinitrosotrimethylenetriamine	$C_3H_6N_6O_3$	-92.5	-389.1	-57.3	-68.6	-54.4	-15.1	-29.3	19.7	-33.9	-62.3	394.55
RDX	$C_3H_6N_6O_6$	-98.7	-449.4	-31.0	-45.2	-63.6	5.0	-8.8	131.0	-9.6	-42.7	191.63
1-phenyltetrazole	$C_7 H_6 N_4$	-115.1	-374.5	-31.0	-48.1	-43.1	-59.4	-44.8	-13.8	-38.5	-60.7	447.98
1 <i>H</i> -benzotriazole	$C_6H_5N_3$	-109.2	-319.7	-30.5	-44.4	-50.6	-56.1	-39.7	-7.5	-36.4	-52.3	335.51
1,3,5-triazine	$C_3H_3N_3$	-60.2	-201.7	-36.8	-43.9	-25.9	-33.9	-26.4	-28.5	-26.4	-29.7	225.85
cyanuric acid	$C_3H_3N_3O_3$	46.9	-150.2	94.6	82.8	91.6	54.8	53.1	100.4	102.5	73.6	-564.09
2,4,6-trimethoxy-1,3,5-triazine	$eC_6H_9N_3O_3$	-174.1	-490.8	-115.5	-135.1	-120.9	-176.1	-179.1	-157.3	-121.3	-156.9	-293.01
cytosine	$C_4H_5N_3O$	-86.2	-286.2	-44.4	-55.6	-44.4	-58.6	-47.3	-19.7	-34.7	-46.4	-58.99
s-triazaborane	$B_3H_6N_3$	-21.8	-192.5	-32.6	-43.5	33.9	-42.3	-47.3	-76.1	-28.5	2.9	-510.03
1,4-dinitrosopiperazine	$C_4H_8N_4O_2$	-72.0	-347.7	-29.7	-41.8	-43.1	-22.2	-23.4	2.9	-25.9	-52.7	194.14
1,4-dinitropiperazine	$C_4H_8N_4O_4$	-89.5	-401.7	-26.4	-40.6	-61.5	-26.4	-28.5	54.4	-24.7	-57.7	58.16
1-nitropiperidine	$C_5 H_{10} N_2 O_2$	-62.8	-335.1	-2.9	-17.2	-44.8	-35.1	-26.8	4.6	-21.3	-50.6	-44.35
3-nitroaniline	$C_6H_6N_2O_2$	-97.5	-332.6	-20.9	-34.3	-56.1	-43.1	-31.8	38.9	-30.5	-54.0	62.34
2,4-dinitrotoluene	$\mathrm{C_7H_6N_2O_4}$	-120.9	-403.8	-18.4	-33.9	-76.1	-35.6	-34.7	101.7	-36.8	-77.4	33.18
2,4,6-trinitrotoluene	$\mathrm{C_7H_5N_3O_6}$	-108.8	-434.7	9.6	-6.7	-59.0	10.9	0.8	202.5	-7.9	-63.6	24.06
(dinitromethyl)benzene	$\mathrm{C_7H_6N_2O_4}$	-80.8	-361.9	19.7	4.6	-41.8	0.0	2.1	130.5	-4.2	-51.5	34.73
nitroglycerine	$C_3H_5N_3O_9$	-103.3	-419.7	-33.9	-42.7	-116.7	12.1	-21.8	212.5	-25.5	-68.6	-279.11
dinitromethane	$CH_2N_2O_4$	-29.7	-170.7	-5.0	-5.4	-46.9	44.4	31.0	134.7	3.3	-13.8	-58.87
tetranitromethane	CN_4O_8	-59.8	-286.6	-2.9	-4.2	-75,3	97.9	59.0	332.6	-2.1	-43.9	82.42
hexamethylenetetramine	$C_{6}H_{12}N_{4}$	-35.6	-368.2	41.0	17.2	42.3	-72.8	-45.6	-138.5	3.8	-71.1	198.99
azidocyclopentane	$C_5 H_9 N_3$	-30.5	-272.0	17.2	6.3	-10.9	7.9	17.2	50.6	-4.6	-14.6	220.79
benzyl azide	$C_7H_7N_3$	-115.5	-360.7	-45.2	-58.6	-67.4	-56.1	-42.3	18.4	-61.5	-66.1	416.31
cyanogen azide	CN ₄	-2.5	-90.4	-8.4	-6.7	10.5	59.0	44.8	113.8	10.0	31.0	451.87
dinitrogen	N_2	12.1	-21.3	-4.6	-2.5	15.9	13.0	11.3	10.0	-2.9	-5.0	0.00
hvdrazine	$H_4 N_2$	-58.6	-146.0	-78.2	-77.8	-69.9	-53.6	-48.1	-66.9	-63.2	-60.7	150.00
3 <i>H</i> -diazirine	CH _a N _a	23.8	-49 0	28.5	28.9	19.2	49.4	36.4	61 5	36.4	29.7	267 11
diazomethane	CH.No	16.7	-56.5	10.9	12 1	13.2	53.6	46.9	76.1	26.4	38 1	215 02
dimethylnitramine	CHNO.	_51.9	_227_6	_37_2	_41_8	_59.8	_17.2	_18_8	15 1	_20.1	_33 9	_5.02
dinitrogon totrovido	N O	-51.5	160.2	-37.2	28.0	-55.0	51.0	21.8	210.0	20.2	-55.5	0.02
dinitrogen triovide	N O	21 4	112.0		-50.5	-55.7	51.5	25.6	164.0	12.1	10.7	9.00
tatrafluarahudranian		-31.4	122 5	-20.9	-23.0	-36.5	56.9 15 0	35.6	7.0	-12.1	-12.1	02.04
tetrafluoronydrazine	r ₄ IN ₂	-49.8	-133.5	-49.4	-51.9	-64.9	-15.9	-25.5	7.9	-12.1	-29.7	-8.3/
pentatiuoroguanidine		-6/.4	-199.2	-59.4	-66.5	-66.5	-21.8	-36.4	6./	-12.1	-36.0	95.69
trans-difluorodiazene	$F_2 N_2$	-29.3	-87.4	-34.7	-33.9	-39.3	5.9	0.4	27.2	-7.1	-12.6	81.17
cis-difluorodiazene	$F_2 N_2$	-25.5	-83.7	-31.4	-30.1	-37.2	14.6	8.4	43.1	-3.8	-5.0	68.62
propionitrile	C_3H_5N	-20.9	-138.5	-10.9	-14.2	-20.1	-10.9	-10.0	-5.4	-20.9	-24.3	51.51
1,1,1-ethanetricarbonitrile	$C_5H_3N_3$	-16.3	-176.6	7.1	0.0	25.1	6.3	-4.2	36.4	-18.4	-42.3	422.50
3-aminopropanenitrile	$C_3H_6N_2$	-22.6	-175.3	-15.5	-20.9	-15.5	-16.3	-12.1	-17.2	-22.2	-30.5	89.75
tetracyanoethylene	$C_6 N_4$	-51.0	-206.7	-20.1	-26.8	12.6	14.2	-8.4	92.0	-38.1	-53.1	705.00

kJ \cdot mol⁻¹

由图 1 中的热力学循环可知, $C_a H_b N_c O_d$ 的气相 生成焓 $\Delta_f H(C_a H_b N_c O_d)$ 可通过下式求解:

$$\Delta_{f}H(C_{a}H_{b}N_{c}O_{d}) = a\Delta_{f}H(C) + b\Delta_{f}H(H) + c\Delta_{f}H(N) + d\Delta_{f}H(O) - \Delta H_{\text{atomization}}$$
(1)

式中, $\Delta_{f}H(C)$, $\Delta_{f}H(H)$, $\Delta_{f}H(N)$, $\Delta_{f}H(O)$ 为原子 C、H、N和O的实验气相生成焓^[14], kJ・mol⁻¹; $\Delta H_{\text{atomization}}$ 为原子化反应的标准反应焓, kJ・mol⁻¹, 通过振动频率分析可获得反应物与产物的焓值,再经 由下式计算得到:

$$\Delta H_{\text{atomization}} = aH(C) + bH(H) + cH(N) + dH(O) - H(C_aH_bN_cO_d)$$

为了更直观地体现各密度泛函的优劣,在焓值计 算中没有使用校正因子,并统一使用 Dunning 基组 cc-PVTZ^[15-16]进行计算。所有计算均由 Gaussian^[17] 软件完成。

2.3 误差分析

采用平均偏差(MSD)和平均绝对偏差(MAD)评价气相生成焓计算值与实验值的偏离程度,其定义分别如下:

$$MSD = \frac{1}{n} \sum_{i=1}^{n} e_i \tag{3}$$

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |e_i|$$
(4)

式中,e;是计算值与实验值的偏差,n为分子个数,即52。

3 结果与讨论

3.1 密度泛函筛选

基于原子化反应,采用不同密度泛函计算了52个 多氮化合物的气相标准生成焓,计算偏差示于表 1。 为了更客观地评价不同密度泛函的优劣,也采用组合 方法 G4^[18]计算了生成焓。将计算偏差按照化合物顺 序作图可得图 2,由图 2 可知,B3P86 与 M06HF 两种 泛函显著偏离了其他泛函,计算偏差最大,尤其是 B3P86 泛函,每个化合物的计算偏差均为负值,说明 计算结果存在系统误差。除了B3P86与M06HF,其

表 2 不同密度泛函计算气相生成焓的平均偏差和平均绝对偏差

他方法的计算偏差既有正值也有负值,随机误差可以 相互抵消。

为了更准确地评价不同密度泛函的计算结果,计算 了 52 个多氮化合物气相生成焓预测值的平均偏差与平 均绝对偏差。如表 2 所示,M052X、M062X 与 B2PLYP 三 个泛函的平均偏差较小,均小于 15 kJ·mol⁻¹,说明与实 验值吻合较好。其中,以 M052X 泛函计算最精确。相比 之下,B3P86 泛函计算结果最差。若进一步区分正、负偏 差对计算结果的影响,从平均绝对偏差上看,计算精度最 高的前三种泛函分别为 B2PLYP、M062X 和 B3LYP,并且 平均绝对偏差均小于 G4 方法。尽管 G4 方法在计算 小分子原子化能时可以达到化学精度,但并不适用大 于 10 个原子的多氮化合物生成焓计算。因此,最终 选择双杂化泛函 B2PLYP 预测全氮材料的气相标准生 成焓。

3.2 生成焓预测

● 笼型全氮因具有较大环张力而备受瞩目。采用 B2PLYP 泛函对 5 种笼型全氮分子的气相标准生成焓 进行了计算,结果示于表 3。由表 3 可知,笼型全氮具 有较高的正生成焓,且随着氮原子数的增加而增加。 将 B2PLYP 的预测结果与其他文献报道的结果进行了 比较,包括(1)瑞典国防研究院 FOI 计算结果^[19]; (2)英国QinetiQ公司计算结果^[20]。如图3所示,随

 Table 2
 Mean singed deviations and mean absolute deviations of standard enthalpies of formation for different functionals

(2)

	- AR"									kJ • mol
deviation	B3PW91	B3P86	B3LYP	X3LYP	O3LYP	M052X	M062X	M06HF	B2PLYP	G4
MSD	-54.4	-240.6	-20.9	-28.0	-32.6	-5.4	-8.4	43.5	-14.6	-29.3
MAD	62.8	240.6	35.6	39.3	49.4	38.1	32.6	71.5	30.1	44.4

Note: MSD is mean singed deviation; MAD is mean absolute deviation.

kl • mol⁻¹

着氮原子数的增加,B2PLYP 计算结果的增长趋势与 FOI 计算结果类似,但生成焓数据整体偏小。相比之 下,QinetiQ 计算结果的增长趋势较为平缓。

表3 笼型全氮分子的气相标准生成焓

Table 3 Standard enthalpies of formation for representativeall-nitrogen molecules with cage type $kJ \cdot mol^{-1}$

图 3 生成焓预测值与笼型全氮原子数关系图

Fig. 3 Predicted enthalpies of formation for all-nitrogen molecules with cage type as a function of nitrogen atom number

通常,在预估含能材料爆轰性能时更关注的是固相生成焓。考虑到气相生成焓的实验数据比固相生成 焓多,为了准确评价不同密度泛函的优劣,需采集尽可 能多的数据,因此本研究只计算了气相生成焓。至于 全氮材料的固相生成焓,可根据本系列论文"I.晶体 密度预测"^[21]中预测的晶体结构进行晶格能计算,从 而获得固相生成焓。

4 结 论

(1) 基于原子化反应,通过3类9种密度泛函分 别对52 种多氮化合物的气相标准生成焓进行了计 算,双杂化泛函 B2PLYP 的计算精度最高,平均绝对偏 差为30.1 kJ·mol⁻¹

(2)采用 B2PLYP 泛函预测了 5 种笼型全氮分子
 N₄(T_d), N₆(D_{3h}), N₈(O_h), N₁₀(D_{5h}), N₁₂(D_{6h})的气相生成焓分别为 756.4, 1338.2, 1878.5, 2144.3,
 2787.0 kJ·mol⁻¹,随着氮原子数目的增加,生成焓逐渐增加。

参考文献:

- [1] Eremets M I, Gavriliuk A G, Trojan I A, et al. Single-bonded cubic form of nitrogen[J]. Nature Materials, 2004, 3(8): 558-563.
- [2] Samartzis P C, Wodtke A M. All-nitrogen chemistry: how far are we from N60? [J]. International Reviews in Physical Chemistry, 2006, 25(4): 527–552.
- [3] Hirshberg B, Gerber R B, Krylov A I. Calculations predict a stable molecular crystal of N_8 [J]. *Nature Chemistry*, 2014, 6(1): 52–56.
- [4] 李玉川, 庞思平. 全氮型超高能含能材料研究进展[J]. 火炸药学 报, 2012, 35(1): 1-8.
- LI Yu-chuan, PANG Si-ping. Progress of all-nitrogen ultrahighenergetic material [J]. *Chinese Journal of Explosive & Propellants*, 2012, 35(1): 1–8.
- [5] 张光全,董海山. 氮簇合物——潜在的高能量密度材料候选物
 [J]. 含能材料, 2004, 12(增刊): 105-113.
 ZHANG Guang-quan, DONG Hai-shan. Nitrogen clusters—potential candidates as high-energy density materials[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2004, 12 (supple): 105-113.
- [6] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
 ty[J]. *Physical Review B*, 1988, 37(2): 785–789.
- [7] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. *Journal of Chemical Physics*, 1993, 98(7): 5648-5652.
- [8] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron gas correlation energy [J]. *Physical Review* B, 1992, 45(23): 13244-13249.
- [9] Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. *Physical Review* B, 1986, 33(12): 8822–8824.
- [10] Xu X, Goddard III W A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties[J]. *Proceedings of the National Academy of Science*, 2004, 101(9): 2673-2677.
- [11] Cohen A J, Handy N C. Dynamic correlation [J]. *Molecular Physics*, 2001, 99(7): 607–615.
- [12] Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals [J]. *Theoretical Chemistry Accounts*, 2008, 120(1–3): 215–241.
- [13] Grimme S. Semiempirical hybrid density functional with perturbative second-order correlation[J]. *The Journal of Chemical Physics*, 2006, 124: 034108.
- [14] http://webbook.nist.gov/chemistry/2016.01.10.
- [15] Head-Gordon M, Pople J A, Frisch M J. MP2 energy evaluation by direct methods[J]. *Chemical Physics Letters*, 1988, 153(6): 503-506.
- [16] Kendall R A, Dunning T H, Harrison R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. *The Journal of Chemical Physics*, 1992, 96(9): 6796-6806.
- [17] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[CP], Gaussian, Inc., Wallingford CT, 2009.
- $[\,18\,]$ Curtiss L A, Redfern P C, Raghavachari K. Gaussian-4 theory

含能材料

[I]. Journal of Chemical Physics, 2007, 126: 084108.

- [19] Östmark H. High energy density materials (HEDM): overview, theory and synthetic efforts at FOI[C] // New Trends in Research o f Energetic Materials, Czech Republic, 2006: 231-250.
- [20] Haskins P J, Fellows J, Cook M D, et al. Molecular level studies of polynitrogen explosives [C] // 12th International Detonation Symposium, California, 2002.
- [21] 刘英哲,来蔚鹏, 尉涛, 等. 全氮材料基础性能理论研究: I. 晶 体密度预测[J]. 含能材料, 2017, 25(2): 100-105. LIU Ying-zhe, LAI Wei-peng, WEI Tao, et al. Theoretical investigations on fundamental properties of all-Nitrogen materials: I. Predication of crystal densities [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(2): 100-105.

Theoretical Investigations on Fundamental Performances of All-nitrogen Materials: II. Prediction of Enthalpies of Formation

LIU Ying-zhe¹, LAI Wei-peng¹, YU Tao¹, GE Zhong-xue¹, LUO Yan-jiao², XU Tao², YIN Shi-wei²

(1. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China; 2. Shaanxi Normal University, Xi'an 710062, China)

Abstract: To accurately predict the enthalpies of formation of all-nitrogen materials, nine density functionals including B3PW91, B3P86, B3LYP, X3LYP, O3LYP, M052X, M062X, M06HF, B2PLYP52 were employed to calculate the enthalpies of formation of nitrogen-rich compounds via atomization reaction. The calculation results show that double hybrid functional B2PLYP has the smallest mean absolute deviation of 30.1 kJ \cdot mol⁻¹, which is more accurate than G4 method. Hence, the enthalpies of formation of five all-nitrogen molecules with cage structure, namely, $N_4(T_d)$, $N_6(D_{3b})$, $N_8(O_b)$, $N_{10}(D_{5b})$, and $N_{12}(D_{6b})$, were predicted by B2PLYP functional, and the corresponding results were 756.4, 1338.2, 1878.5, 2144.3, 2787.0 kJ · mol⁻¹, respectively. Key words: density functionals; cage structures; atomization reactions; all-nitrogen materials

CLC number: TJ55 Document code: A DOI: 10.11943/j.issn.1006-9941.2017.07.004

∦ 读者・作者・编者 ∦ *****

《含能材料》"观点"征稿

为了丰富学术交流形式,及时传递含能材料领域同行们的学术观点和思想,《含能材料》开设了"观点"栏目。"观点" 栏目的来稿应观点鲜明、内容新颖、形式上短小精悍。欢迎含能材料各领域的专家积极来稿。来稿时请附个人简介及主要

《含能材料》编辑部