- Journal, 2016, 22(5): 1768-1778.
- [21] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7):
- [22] Rice B M, Hare J J, Byrd E F E. Accurate predictions of crystal densities using quantum mechanical molecular volumes [J]. Journal of Chemical Physics A, 2007, 111(42): 10874-10879.
- [23] Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation[]]. Journal of Chemical Physics, 1997,

- 106(3): 1063-1079.
- [24] Ochterski J W, Petersson G A, Montgomery J A. A complete basis set model chemistry V. extension to six or more heavy atoms [J]. Journal of Chemical Physics, 1996, 104(7): 2598–2619.
- [25] Politzer P, Murray J S, Grice M E, et al. Calculation of heats of sublimation and solid phase heats of formation [1]. Molecular Physics, 1997, 91(5): 923-928.
- [26] Kamlet M J, Jacobs S J. Chemistry of detonation I. a simple method for calculating detonation properties of CHNO explosives [J]. Journal of Chemical Physics, 1968, 48(1): 23-35. nergetic

Synthesis and Properties of 3-Cyano-4-nitrofuroxan

ZHAI Lian-jie^{1,2}, LUO Yi-fen^{1,2}, LI Ya-nan^{1,2}, HUO Huan^{1,2}, BI Fu-qiang^{1,2}, FAN Xue-zhong¹, WANG Bo-zhou^{1,2} (1. Modern Chemistry Research Institution, Xi'an 710065, China; 2. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an 710065, China)

Abstract: 3-Cyano-4-nitrofuroxan was synthesized from dicyanopropane via diazotisation, addition, cyclization and oxidation reactions, and its structure was characterized by IR, 13 C NMR and 15 N NMR and elemental analysis. The yields of cyclization and oxidation reactions are 55.1% and 83.6%, respectively. In the ¹³C NMR, the chemical shifts were assigned by comparing with 3-cyano-4-nitrofurazan, which further confirm the configuration of 3-cyano-4-nitrofuroxan. The bond order, density, enthalpy of formation and detonation parameters of 3-cyano-4-nitrofuroxan were calculated theoretically. Results show that the minimum bond order are N(1)—O(4)(0.84) and C(6)—N(9)(0.91), the density is up to 1.74 g \cdot cm⁻³, the enthalpy of formation is 352.6 kJ·mol⁻¹, and the detonation velocity and detonation pressure are 8352 m·s⁻¹ and 30.9 GPa, respectively.

Key words: 3-cyano-4-nitrofuroxan; synthesis; quantum chemistry

CLC number: TJ55; O62

Document code: A

DOI: 10.11943/j.issn.1006-9941.2017.06.010

※ 读者・作者・编者 ※ *``**********

《含能材料》"观点"征稿

为了丰富学术交流形式,及时传递含能材料领域同行们的学术观点和思想,《含能材料》开设了"观点"栏目。"观点" 栏目的来稿应观点鲜明、内容新颖、形式上短小精悍。欢迎含能材料各领域的专家积极来稿。来稿时请附个人简介及主要 《含能材料》"损伤与点火"征稿 研究工作介绍。

含能材料的损伤特征与点火过程有密切的联系,炸药、推进剂的内部损伤及其对力学特性、安全特性和点火行为的影 响规律受到了含能材料学界的高度重视,为推动这一重要研究方向的学术交流,本刊特设立"损伤与点火"专栏。专栏主要 征集炸药、推进剂等含能材料的损伤观测与多尺度表征技术、含损伤的本构方程、准静态与动态损伤演化规律、损伤与破坏 的宏(细)观模式、损伤对起爆、爆炸、爆轰成长以及非冲击起爆行为的影响等方向的原创性研究论文。来稿请注明"损伤与 点火"专栏。

《含能材料》编辑部