Synthesis and Properties of \(N \)-alkytriazole-cyanoborane Propellant Fuels

WANG Chen-bin, LI Xing-ye, CHEN Fu-xue

(Beijing Institute of Technology School of Chemistry and Chemical Engineering, Beijing 100081, China)

Abstract: To develop novel hypergolic propellant fuels with high density, low viscosity, wide liquid temperature range, high specific impulse, and high decomposition temperature, a series of \(N \)-alkyltriazole cyanoborane complexes were prepared in a straightforward way by treating \(N \)-substituted triazoles hydrogen chloride salts and NaBH\(_4\),CN. The synthesized compounds were characterized by IR, NMR and HRMS for their structures, and measured by differential scanning calorimetry (DSC), densimeter and viscometer for their thermostability, density, viscosity and ID. On the other hand, Gaussian 09 was used to optimize the crystal structure and calculate the formation enthalpy, based on which Explo5 v6.02 was employed to predict the theoretical specific impulse. Four out of five compounds were found to be liquid at room temperature and proved to be hypergolic with white fuming nitric acid (WFNA) by the droplet test. Especially, \(N \)-Propyl-1,2,3-triazole cyanoborane complex \(3 \) demonstrated attractive properties such as short ID time (12 ms), high density (1.024 g·cm\(^{-3}\)), good thermostability \((T_\text{on}=233 \degree\text{C}, \text{onset}) \), good \(I_\text{sp} \) \((201.7 \text{ s}) \) and \(\rho L_p \) \((357 \text{ s·g·cm}^{-1}) \), super low viscosity \((16 \text{ mPa·s}) \) and wide liquid range \((T_m<70 \degree\text{C}) \), showing the promising application potential as a propellant fuel candidate.

Key words: synthesis; \(N \)-alkytriazole cyanoborane; liquid propellant; borane fuels

CLC number: V511; O62

Document code: A

DOI: 10.11943/Cjem2018164

《含能材料》“观点”征稿

为了丰富学术交流形式，及时传递含能材料领域同行们的学术观点和思想，《含能材料》开设了“观点”栏目。“观点”栏目来稿须观点鲜明、内容新颖、形式上短小精悍。欢迎含能材料各领域的专家积极来稿。来稿时请附个人简介及主要研究工作介绍。

《含能材料》编辑部