文章编号:1006-9941(2019)08-0644-08

LLM-105 与高聚物黏结剂界面相互作用及力学性能的分子动力学模拟

郭 蓉¹,杨志剑²,段晓惠¹,裴重华¹

(1. 西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010; 2. 中国工程物理研究院化工材料研究所,四川 绵阳 621999)

摘 要: 高聚物与2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)的界面相互作用直接影响LLM-105的表面包覆效果,在原子 分子层次的作用模式和强度分析,有助于揭示界面相互作用的微观机制。采用分子动力学(MD)方法,模拟了氟聚物(F₂₃₁₁,F₂₃₁₃,F₂₃₁₄,F₂₄₆₂)和聚氨酯(Estane 5703)与LLM-105不同晶面的界面相互作用,分析了高聚物与LLM-105晶面的作用模式和强度,初步提 出了高聚物黏结剂的筛选原则,并采用该原则筛选了一个新的高聚物——硝化细菌纤维素(NBC),同时模拟了其与LLM-105晶面 的相互作用。采用静态弹性常数分析法讨论了6种高聚物对LLM-105力学性能的影响。模拟结果表明,所选高聚物与LLM-105 春 晶 面的结合能均为正值,结合强度从大到小的顺序为LLM-105/NBC≈LLM-105/Estane 5703>LLM-105/F₂₃₁₃≈LLM-105/F₂₃₁₄≈LLM-105/F₂₃₁₄≈LLM-105/F₂₃₁₁>LLM-105/F₂₃₁₃≈LLM-105/F₂₃₁₄≈LLM-105/F₂₃₁₃≈LLM-105/F₂₃₁₄≈LLM-105/F₂₃₁₃≈LLM-105/F₂₃₁₄≈LLM-105/F₂₃₁₁>LLM-105/F₂₄₆₂。结合能最大的(1 0 1)晶面,在晶体中的显露面最小(0.39%),而结合能小的(0 2 0)和(0 1 1)晶面,其显露面却占了很大比例(二者之和>60%)。在界面相互作用中,范德华力均占据优势地位,远远超过静电相互作用。能与LLM-105发生强相互作用的高聚物应能同时提供氢键良给体和良受体。通过对有效各向同性模量和柯西(Cauchy)压值的分析得到,加入NBC、Estane 5703和F₂₄₆₂对LLM-105力学性能有所改善,F₂₃₁₁和F₂₃₁₃来有改善,而F₂₃₁₄则有所下降。 关键词: 2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105);高聚物;界面相互作用;力学性能

中图分类号: TI55: O631.2⁺1 ______文献标志码: A

DOI:10.11943/CJEM2018349

1 引言

2, 6-二 氨 基-3, 5-二 硝 基 吡 嗪-1-氧 化 物 (LLM-105)由美国劳伦斯利弗莫尔国家实验室于 1995年首次合成,晶体密度高(1.913 g·cm⁻³),安全 性能好(对撞击、火花、摩擦和冲击波钝感),耐热性能 优于多数高能炸药,其DSC放热峰值(354 ℃)与1,3, 5-三氨基-2,4,6-三硝基苯(TATB)几乎一致,做功能 力介于TATB和环四亚甲基四硝胺(HMX)之间,能量 比 TATB 高 15%,是 HMX 的 81%^[1-2]。基于此, LLM-105 基复合炸药有望成为一种性能优越的钝感 高能炸药(IHE),受到各国含能材料研究者的高度 关注^[3-4]。

研究表明,高聚物黏结炸药包覆层的包覆度、均匀 性和致密度会严重影响炸药的感度、力学性能和加工 成型性^[5-6]。研究发现LLM-105表面黏结性能差,包 覆效果不好^[7-8],这无疑会对LLM-105的力学性能、成 型性能、安全性能等产生影响。因此,选择合适的高分 子黏结剂对制备性能优越的LLM-105基高聚物黏结 炸药至关重要。

高聚物黏结炸药的力学性能主要取决于主体炸药本身性质^[9]、黏结剂性质和界面相互作用^[10-12]。Yu^[13]等人采用分子动力学方法模拟了F₂₃₁₁、F₂₆₄₁、聚乙二醇(PEG)和乙烯一乙酸乙烯酯共聚物(EVA)对5,5'-联四唑-1,1'-二氧二羟铵(TKX-50)的力学性能、可塑性和结合能的影响,表明添加少量高聚物黏结剂可有效提升纯TKX-50的力学性能和可塑性。陶俊^[14]等人采用分子动力学方法模拟了不同软硬段(3-叠氮甲基氧丁环(AMMO):3,3-二叠氮甲基氧丁环

引用本文:郭蓉,杨志剑,段晓惠,等.LLM-105 与高聚物黏结剂界面相互作用及力学性能的分子动力学模拟[J]. 含能材料,2019,27(8):644-651. GUO Rong, YANG Zhi-jian, DUAN Xiao-hui,et al. Molecular Dynamics Simulations for Interfacial Interactions and Mechanical Properties of LLM-105 with Polymers[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2019,27(8):644-651.

Chinese Journal of Energetic Materials, Vol.27, No.8, 2019 (644-651)

收稿日期: 2018-12-13;修回日期: 2019-02-19

网络出版日期: 2019-05-10

基金项目:国家自然科学基金资助(11572270)和中国工程物理研究院化工材料研究所横向项目

作者简介:郭蓉(1995-),女,硕士,主要从事含能材料计算与模拟 研究。e-mail:guorong_0501@126.com

通信联系人:段晓惠(1970-),女,教授,主要从事材料计算与模拟研究。e-mail:duanxiaohui@swust.edu.cn

(BAMO))比例的含能黏结剂与六硝基六氮杂异戊兹 烷(CL-20)的结合能以及作用方式,发现,含能黏结剂 可有效地降低*e*-CL-20的刚性,增强延展性。高聚物 黏结剂对LLM-105的包覆效果与二者之间的界面相 互作用关联度很大,而这方面的研究尚未见报道。因 此,本研究以LLM-105为主体炸药,选择5种高聚物黏 结剂(F₂₃₁₁、F₂₃₁₃、F₂₃₁₄、F₂₄₆₂、Estane 5703),模拟这些高 聚物与LLM-105不同晶面的界面相互作用,分析影响 界面结合强度的主要因素,初步建立LLM-105基配方 中高聚物的筛选原则,并按该原则筛选得到一种新的 聚合物——硝化细菌纤维素(NBC),模拟分析其与 LLM-105各个晶面的相互作用,以验证筛选原则。此 外,还模拟了以上6种高聚物对LLM-105力学性能的 影响。研究结果可为LLM-105基配方中高聚物的筛 选以及解决其表面包覆问题提供依据。

2 计算方法

2.1 真空中 LLM-105 晶体形貌预测方法

首先基于剑桥有机晶体数据库(CCDC)获取 LLM-105的晶体结构数据(CCDC编号为YEKQAG), 构建其晶胞模型。利用 Materials Studio 材料模拟平 台中的Forcite模块,对其进行结构优化。设置如下优化参数:Compass力场,"Fine"精度(能量收敛值4.186×10⁻¹ J·mol⁻¹),"Smart"方法,优化晶胞参数。采用 Morphology 模块中的附着能(AE)模型,对LLM-105晶体的真空形貌进行预测。

2.2 LLM-105 与聚合物界面模型构建

研究不同高聚物与LLM-105各个晶面的界面作用,选择的高聚物包括系列氟聚物(F₂₃₁₁、F₂₃₁₃、F₂₃₁₄、 F₂₄₆₂)、聚氨酯 Estane 5703以及后续根据聚合物筛选 原则选择的 NBC,其结构式见图 1,端基以 H 原子 饱和。

高聚物与LLM-105晶面相互作用模型的建立以 F₂₃₁₁为例加以说明(见图2)。首先需根据聚合物的类 型(均聚物、嵌段共聚物、无规共聚物)和聚合度构建聚 合物链段,然后依据LLM-105基配方中高聚物的大致 含量(质量比约5%)来计算所需链段数(5条),再按照 高聚物的实验密度来构建聚合物层。将聚合物层与不 同晶面组合即可得到双层界面模型,其中真空层的厚 度为40Å。

2.3 分子动力学(MD)模拟方法

首选对所构建的界面模型进行分子力学优化,优

图1 高聚物黏结剂的分子结构式^[11]

Fig.1 Molecular structures of polymer binders

图2 F₂₃₁₁与LLM-105界面作用的模型构建

Fig.2 Interfacial interaction model construction between F₂₃₁₁ and LLM-105

CHINESE JOURNAL OF ENERGETIC MATERIALS

化参数设置同 2.1。基于优化后的界面模型进行正则 系综(NVT)下的 MD 模拟。模拟参数设置:控温方法 Anderson,积分步长 1.0 fs,总模拟时间为 200 ps, Ewald方法计算范德华和静电相互作用,每隔 1000步 输出一帧,最后一帧用来分析性能。为了模拟力学性 能,基于 NVT 模拟的最后一帧,进行等温等压系综 (NPT)下的 MD 模拟。除采用 Parrinello 方法控制压 力外,其它参数同 NVT模拟。

3 结果与讨论

3.1 LLM-105 在真空中的晶体形貌

LLM-105 的空间群为 P2,/n,单斜晶系。采用 Compass 力场优化前后的晶胞参数和相对误差列于 表1。从表1可以看出,最大误差为b轴的7.7%。究 其原因可能是由于b轴方向主要为层与层之间的范德 华力,对这种非常弱的分子间相互作用的模拟,要达到 较高的准确度难度更大。总的来说,模拟误差在可接 受的范围之内。

表1 模拟前后的晶胞参数及相对误差

Table 1Cell parameters and relative error before and aftersimulation

cell parameters	a / Å	<i>b</i> / Å	c / Å	eta / (°)
exp.	5.716	15.850	8.414	101.041
calc.	6.097	14.629	8.384	105.863
<i>E</i> _r /%	6.7	7.7	0.33	0.05

采用 Morphology 模块中的 AE 模型, 预测得到 LLM-105在真空中的晶体形貌见图 3, 各个晶面的参数 见表2。模拟结果表明,LLM-105的晶体形貌由6个独 立晶面组成,分别为(020)、(011)、(101)、(110)、 (111)、(101),其中最大显露面为(011),占总显 露面的 35.72%, 其次是(0 2 0)(28.60%)和(1 1 0) (20.07%)。显露面最小的是(101)面,只占了 0.39%。不同晶面的表面化学和拓扑结构也各不相同 (见图4)。从图4可以看出,各个晶面的显露基团种 类、密度、暴露程度以及晶面的台阶、扭折结构均不相 同。由于各个晶面在化学组成和结构上的差异,导致 其附着能 Eat 也各不相同。比如晶面面积最小的晶面 (020),其附着能 E_{at}的绝对值为43.45 kJ·mol⁻¹,其中 静电能为14.78 kJ·mol⁻¹,范德华力 28.67 kJ·mol⁻¹, 该绝对值远小于晶面面积最大的(101)面,其值为 78.12 kJ·mol⁻¹。同时表 2 中也列出了各个晶面的溶 剂可接触面积,该值定量反映了晶面的拓扑结构。可 以看出,晶面面积最小的(020)面,其溶剂可接触面 积也最小,仅57.71Å²,而(101)面拥有最大的溶剂 可接触面积,267.88Å²。

表 2	真空	它中LLM-105各个晶面的性质参数
Tahlo	2	Property parameters at each crystal

Table 2	Property	parameters	at each	crystal	face	of L	LM-	105
in vacuur	n							

crystal face	mult ¹⁾	total facet area ²⁾ / %	<i>S</i> ³⁾ _{u nit} / Å ²	E _{att} ∕ kJ∙mol ⁻¹	S ⁴⁾ _{acce} / Å ²
(020)	2	28.60	49.17	-43.45	57.71
(011)	4	35.72	101.85	-53.34	135.48
(101)	2	10.21	130.45	-64.71	171.12
(110)	4	20.07	132.14	-65.58	244.38
(111)	4	5.01	139.41	-69.35	224.32
(101)	2	0.39	170.23	-78.12	267.88

Note: 1) Multiplicity of crystal faces; 2) The exposed area of each crystal face as a percentage of the total exposed area; 3)Area of crystal faces in a unit cell; 4) Solvent accessible area of crystal faces in a unit cell.

图3 LLM-105在真空中的晶体形貌

Fig.3 Crystal morphology of LLM-105 in vacuum

图4 LLM-105各个晶面的表面化学和拓扑结构(括号内数字)为晶面扩大倍数)

Fig.4 Surface chemistry and topological structures of LLM-105 at different crystal faces (the number in bracket denotes the expansion multiples)

3.2 高聚物黏结剂与LLM-105不同晶面的结合能

基于 NVT 模拟的最终平衡结构计算 6 种高聚物 与 LLM-105 不同晶面相互作用能(*E*_{int}),计算公式 如(1)式:

$$E_{\text{bind}} = -E_{\text{int}} = -(E_{\text{tot}} - E_{\text{poly}} - E_{\text{LLM-105}})$$
 (1)

式中, E_{tot}为体系总能量; E_{LLM-105}为去掉高聚物链后

含能材料

LLM-105 晶面的单点能; *E*_{poly}为去掉 LLM-105 晶面后 高聚物的单点能,单位均为kJ·mol⁻¹。按照(1)式分别 求得每组高聚物与不同晶面的相互作用能,并按照晶 面扩展倍数进行归一化,结果列于表 3。

从表3可以看出,6种高聚物与LLM-105各晶面 结合强度不同,且不同高聚物与不同晶面表现出了较 大的差异性。首先对同一高聚物,不同晶面的结合能 有的差异很大。比如 Estane 5703,其与(101)面的 结合能为203.063 kJ·mol⁻¹,但与(020)晶面却只有 54.154 kl·mol⁻¹。不同晶面结合能从大到小排序见 表4。虽然不同高聚物的结合能排序有差异,但仍有 共同之处。比如所有高聚物和(101)晶面的结合能 都是最高的。除 F_{3462} 外,其它高聚物与(111)面的结 合能仅次于(101)面。即使是 F₂₄₆₂,(111)排到了第 三位,但也仅比(110)面差7.774 kJ·mol⁻¹。在所选 5种高聚物中,结合能最低的晶面均为(020)面,其次 为(011)。结合能最大的(101)和 $(11\overline{1})$ 面,在真 空的显露面最小,分别占总显露面的0.39%和 5.01%。而结合能低的两个晶面(020)和(011),却 在整个显露面中占据了很大的比例,二者之和均超过 了 50% (见表 2)。其次,在界面相互作用中,范德华力 均占据优势地位,远远超过了静电相互作用。比如 F₂₃₁₁与(101)面的结合能为135.551 kJ·mol⁻¹,其中

表 3	6种高聚物与LLM-105不同晶面的结合能
-----	-----------------------

Table 3	Binding ene	ergies between	six polymers	and LLM-105	at different	crystal faces
---------	-------------	----------------	--------------	-------------	--------------	---------------

kJ∙mol⁻¹

interfacial model	binding energy	(011)	(101)	(110)	(020)	$(1 \ 1 \ \overline{1})$	(101)
	E _{total}	108.133	203.063	150.294	54.154	168.265	142.207
LLM-105/Estane 5703	E _{van}	74.477	145.970	106.379	44.861	112.859	94.068
	E _{ele}	33.655	57.093	43.915	9.293	55.406	48.139
	E _{total}	83.025	150.629	116.806	36.431	136.974	100.112
LLM-105/F ₂₃₁₄	E _{van}	69.010	115.433	108.279	31.738	109.238	84.373
	E _{ele}	14.014	35.192	8.523	4.693	27.736	15.744
	E _{total}	75.921	160.550	116.584	44.430	136.464	97.312
LLM-105/F ₂₃₁₃	E _{van}	66.524	134.111	102.126	39.855	111.230	80.480
	E _{ele}	9.398	26.435	14.463	4.575	25.233	16.832
	E _{total}	76.641	151.383	136.514	44.506	128.740	107.099
LLM-105/F ₂₄₆₂	E _{van}	53.083	100.983	95.947	33.681	92.594	75.428
	E _{ele}	23.559	50.399	40.566	10.829	36.142	31.675
	E _{total}	82.527	135.551	112.637	47.808	132.479	116.496
LLM-105/F ₂₃₁₁	E _{van}	66.670	113.993	103.440	38.306	109.765	88.609
	E _{ele}	15.857	21.558	9.197	9.502	22.713	27.887
	E _{total}	107.848	187.750	150.156	61.806	156.565	135.513
LLM-105/NBC	E _{van}	78.701	122.507	109.435	47.360	110.703	98.739
	E _{ele}	29.147	65.247	40.726	14.446	45.858	36.774

Note: E_{van} is the van der Waals interaction E_{ele} is the electrostatic interaction, E_{total} is the total interaction.

CHINESE JOURNAL OF ENERGETIC MATERIALS

范德华力为113.993 kJ·mol⁻¹,占了约90%。以上分

析可以初步说明,5种高聚物虽都能与LLM-105相结

合,但结合品质不高,即相互作用力主要是弱的范德华

力。此外,结合能大的晶面在结晶形貌中所占比例较

小,而结合能小的晶面却占据了很大的比例。这些模

拟结果可为实验上LLM-105与高聚物黏结性差,包覆

互作用的强弱趋势,绘制了图5的柱状图。综合分析

表3数据和图5的直观对比,得出结合强度从大到小

的大致顺序:LLM-105/Estane 5703>LLM-105/F₂₃₁₃≈

构得到一定程度的解释。从图 4 可知, LLM-105 晶面

上显露的基团为一NH,、一NO,和一N→O基团,既有

氢键的良受体,也有氢键的良给体。Estane 5703具有

的基团为一COONH一和一COO一,不但可提供氢键

给体,也可提供氢键受体,能显著增强与LLM-105晶

面的氢键作用。对三个系列氟聚物 F₂₃₁₁、F₂₃₁₃和 F₂₃₁₄,

除氢键受体F和CI外,氢键给体则是非常弱的C-H。

而 F₂₄₆₂氟聚物,氢键受体全部为 F,给体同样为 C-H。

通过对界面结构的分析发现,四个氟聚物(F2311、F2313、

F₂₃₁₄和F₂₄₆₂)均只提供了氢键受体(F和CI),没能提供

LLM-105/F₂₃₁₄ ≈ LLM-105/F₂₃₁₁ > LLM-105/F₂₄₆₂ ∘

为了更好地比较不同高聚物与LLM-105晶面相

结合能的差异也可从高聚物和晶面构成的界面结

效果不好提供一定的解释。

氢键给体。而 Estane 5703则既提供了氢键给体也提供了氢键受体,形成的氢键数目明显大于氟聚物,这也

表4 高聚物与LLM-105不同晶面结合能排序

Table 4Binding energy order of polymers with LLM-105 atdifferent crystal faces

Polymers	Compatibility order of polymers and crystal faces
Estane 5703	$(1 \ 0 \ 1) > (1 \ 1 \ \overline{1}) > (1 \ 1 \ 0) > (1 \ 0 \ \overline{1}) > (0 \ 1 \ 1) > (0 \ 2 \ 0)$
F ₂₃₁₁	$(1 \ 0 \ 1) > (1 \ 1 \ \overline{1}) > (1 \ 0 \overline{1}) > (1 \ 1 \ 0) > (0 \ 1 \ 1) > (0 \ 2 \ 0)$
F ₂₃₁₃	$(1 \ 0 \ 1) > (1 \ 1 \ \overline{1}) > (1 \ 1 \ 0) > (1 \ 0 \ \overline{1}) > (0 \ 1 \ 1) > (0 \ 2 \ 0)$
F ₂₃₁₄	$(1 \ 0 \ 1) > (1 \ 1 \ \overline{1}) > (1 \ 1 \ 0) > (1 \ 0 \ \overline{1}) > (0 \ 1 \ 1) > (0 \ 2 \ 0)$
F ₂₄₆₂	$(1 \ 0 \ 1) > (1 \ 1 \ 0) > (1 \ 1 \ \overline{1}) > (1 \ 0 \ \overline{1}) > (0 \ 1 \ 1) > (0 \ 2 \ 0)$
NBC	$(1 \ 0 \ 1) > (1 \ 1 \ \overline{1}) > (1 \ 1 \ 0) > (1 \ 0 \ \overline{1}) > (0 \ 1 \ 1) > (0 \ 2 \ 0)$

a. total binding energy

b. Van der Waals binding energy

c. electrostatic binding energy

图5 高聚物与LLM-105晶面相互作用强弱对比

Fig. 5 The trend of interactions between polymers and LLM-105 at different crystal faces

是 Estane 5703 与 LLM-105 各个晶面的相互作用均大 于四个氟聚物的原因。当然,除了高聚物的化学组成 (基团)之外,和晶面作用时的空间位阻也会影响相互 作用的强弱。因此,在选择 LLM-105 的高聚物时,需 考虑基团和空间结构两方面的因素,其候选物最好同 时具有一OH、一COOH、一NH和一COO一等氢键良 给体和良受体基团。基于该原则选择了一个新的聚合 物,即硝化细菌纤维素(NBC),为方便起见其分子结 构式也一并显示在图1中。采用相同模拟方法计算得 到其和 LLM-105 各个晶面的相互作用(见表 3 和 图 5)。对模拟结果的综合分析表明,NBC和LLM-105 晶面的相互作用模式和强度与 Estane 5703 基本相当, 这也初步证实了该选择原则的合理性。

3.3 力学性能

弹性力学性能的主要参量包括弹性系数、有效各向同性模量和泊松比。广义胡克定律^[15-16]为: $\sigma_i = C_i \varepsilon_i$ (2)

其中弹性系数 C_{ij} 反映应力-应变(σ - ε)关系。即 C_{ij} 越大,产生相同的应变时,需要承受更大的应力。 模量则是评价材料刚性的指标,是材料抵抗弹性形变 能力的度量。塑性和断裂性质与模量是相关联的,剪 切模量(G)值越大,材料的硬度和屈服强度越高,二者 是材料抵抗塑性形变能力的度量;体积模量(K)值越 大则表明材料断裂强度越大。体积模量与剪切模量的 比值(K/G)用于衡量材料的延展性,K/G值越大材料 延展性越好。Cauchy压(C_{12} - C_{44})反映材料的脆性程 度,Cauchy压为负值,材料表现脆性,负值越小,脆性 越强。反之Cauchy压为正值时,材料表现韧性。^[17]

对平衡状态下 NPT 系综 MD 模拟数据进行静态 弹性力学性能分析,得到 LLM-105 和高聚物界面模型 的弹性系数 C_{ij} 、体模量 G、剪切模量 K 及 Cauchy 压 (C_{12} - C_{44})。根据各向同性材料之间的相关系:

E = 2G(1 + v) = 3K(1 - 2v)(3)

可求得其拉伸模量 E 和泊松比 v,计算结果见 表4。对表4的分析表明,加入聚氨酯 Estane 5703 后, 除(011)晶面外,其余晶面的 E、K和 G值均比纯组分 的值小,刚性减弱。(011)晶面的 K和 G值与纯组分相 比,变化较小。每个晶面的泊松比 v和 K/G的值较纯组 分 LLM-105大,表明体系的伸长率增大,塑性和延展性 变好。柯西(Cauchy)压值增大,且大部分晶面为正值, 即添加 Estane 5703 后,炸药的韧性变好。可见,加入 Estane 5703 后 LLM-105 的力学性能有所改善。

加入NBC后,除(101)面之外,大部分晶面的E、

					• •		
		(011)	(111)	(020)	(101)	(110)	(101)
	Ε	1.6426	3.9900	5.3021	18.2988	2.7621	20.7599
	G	0.7833	1.7975	3.0562	8.5974	1.1761	11.736
	К	0.6064	1.7046	1.397	6.9982	1.4132	5.621
LLM-105	ν	0.0485	0.1099	-0.1325	0.0642	0.1743	-0.1155
	K/G	0.7742	0.9483	0.4571	0.8139	1.2016	0.4789
	C_{12} - C_{44}	-0.1506	-1.4176	0.3381	-15.3646	-1.5058	4.4155
	Ε	4.1519	0.3803	-3.0674	1.9994	-6.255	10.0238
	G	1.6887	0.1398	-0.6826	0.694	-1.2186	3.7014
LLM 105/Ectopo 5702	Κ	2.5563	0.4544	0.6845	5.6017	0.9775	11.4471
LLM-105/Estane 5705	ν	0.2293	0.3605	1.2469	0.4405	1.5665	0.3541
	K/G	1.5138	3.2504	-1.003	8.0716	-0.8022	3.0926
	C_{12} - C_{44}	3.7933	0.7928	1.5052	12.7914	-0.3591	1.0655
	Ε	5.4415	2.9072	0.3853	1.0741	0.6260	4.6395
	G	3.4434	2.7073	0.2118	0.3876	0.2301	1.9590
	Κ	1.2776	0.5031	0.1088	1.5645	0.7461	2.4481
LL/M-105/F ₂₃₁₄	ν	-0.2098	-0.4631	-0.0903	0.3856	0.3602	0.1841
	K/G	0.3710	0.1858	0.5137	4.0364	3.2425	1.2497
	C_{12} - C_{44}	-8.4966	-5.2206	-0.037	1.2837	0.0366	-6.0153
	Ε	2.8294	4.5258	-3.2737	0.0587	2.4076	1.3772
	G	1.1096	2.2604	-1.2895	0.3631	-3.0718	0.5168
	Κ	2.0957	1.5119	-2.3659	0.0069	0.2121	1.3698
LL/M-105/F ₂₃₁₃	ν	0.2749	0.0011	0.2694	-0.9191	-1.3919	0.3324
	K/G	1.8887	0.6689	1.8347	0.0190	-0.0690	2.6505
	C_{12} - C_{44}	4.0412	-0.9216	0.5807	-0.4997	-0.5039	-4.7798
	Ε	1.3254	3.8665	3.2185	0.9777	0.7294	0.1716
	G	0.7858	-5.9324	0.9507	0.3909	-3.4812	-0.1594
LLNA 105/F	Κ	0.5437	1.2018	1.7197	0.4513	0.2376	0.0511
LL/M-105/F ₂₄₆₂	ν	0.2189	0.6086	-0.0642	0.0831	0.5349	0.6795
	K/G	0.6919	-0.2025	1.8089	1.1545	-0.0683	-0.3205
	C_{12} - C_{44}	1.672	14.6924	-0.0598	-0.5865	2.0157	0.0625
	Ε	-2.4549	-0.6748	4.9536	-1.6991	2.9049	-0.2891
	G	-0.8708	-0.2178	3.0349	-0.3706	1.2093	-0.0881
LLM 105/E	Κ	-4.523	2.283	1.2072	0.3574	1.6195	0.3423
LEIM-105/1 ₂₃₁₁	ν	0.4095	0.5493	-0.1838	1.2923	0.2011	0.6408
	K/G	5.1941	-10.4821	0.3978	-0.9644	1.3392	-3.8853
	C_{12} - C_{44}	-8.556	4.7386	-5.5421	1.3973	-0.7066	0.4742
	Ε	1.2586	1.3569	3.2069	9.0644	13.7938	2.1912
	G	0.4648	0.4896	1.5019	3.6201	5.2712	0.7833
	Κ	1.4356	1.9802	1.2361	6.0906	11.9997	3.6051
LLIVI-TUS/INDC	ν	0.3539	0.3858	0.0676	0.2519	0.3084	0.3987
	K/G	3.0886	4.0445	0.8230	1.6824	2.2765	4.6025
	C_{12} - C_{44}	-3.1136	1.5207	-0.1996	-3.5461	-2.7349	1.7746

表5 纯LLM-105及其与6种高聚物形成的界面模型的力学性能

 Table 5
 Mechanical properties of pure LLM-105 and interface models of LLM-105 with six polymers

Note: *E* is tensile modulus. *G* is shear modulus. *K* is bulk modulus. C_{12} - C_{44} is Cauchy. The units of *E*, *G*, *K* and C_{12} - C_{44} are GPa. ν is Poissom's ratio. *K*/*G* is the ratio of bulk modulus to shear modulus.

K和 G值比纯组分的值小,刚性降低。泊松比 v和 K/G的值较纯组分LLM-105 增大,表明体系的伸长率 增大,塑性和延展性较好。(101)面的 Cauchy 压值变 化最大,从纯组分的 15.3646 变为 3.5461。综合来 说,韧性稍有改善。

加入 F_{2314} 氟聚物后,每个晶面的弹性系数大多有 所减小,且多数晶面的 E_{K} 和 G 值均比纯组分 LLM-105小,表明刚性减弱。除了(011)和(111) 面,其余晶面的泊松比 v和 K/G值比纯组分大,因此体 系的伸长率增大,塑性和延展性增强。由于(011)和 (111)晶面在晶体中的显露面大(占整个晶体显露面 的 40.64%),那么这两个面对整体力学性能的影响较 其它晶面显著,其 v和 K/G值的降低将导致塑性和延 展性变差。

加入 F_{2313} 氟聚物后,多个晶面的弹性系数及 $E_{x}K_{x}$ G值较纯组分均有所减小,表明刚性减弱。但显露面 最大的(011)晶面,其弹性系数 $E_{x}K$ 和 G值均比纯组 分大,刚性增强。(020)、(011)、(101)三个晶面的 泊松比 $v_{x}K/G$ 和 Cauchy 压值比纯组分大,表明其伸长 率、延展性和韧性增强。综上,LLM-105 与 F_{2313} 形成的 PBX 其力学性能未得到明显改善。

加入 F_{2311} 氟聚物后,多数晶面的 E_{K} 和 G值均比 纯组分小,刚性减弱。泊松比 v和 K/G值较纯组分大, 体系的伸长率增大,塑性和延展性增强,其中变化最明 显的是(101)和(101)晶面。多数晶面的 Cauchy 压 值增大,但负值居多,说明 LLM-105 与 F_{2311} 形成的 PBX 韧性较纯 LLM-105 增强,但仍不理想。

加入 F₂₄₆₂氟聚物后,每个晶面的弹性系数多有所 减小,且每个晶面的 E、K和 G值均比纯组分小,表明刚 性减弱。泊松比 v、K/G和 Cauchy 压的值较纯组分 LLM-105 大,体系的塑性、延展性和韧性增强,说明 F₂₄₆₂对 LLM-105 的力学性能稍有改善。

4 结论

(1)构建高聚物和LLM-105不同晶面的双层界面 模型,采用MD模拟方法,在Compass力场和NVT系 综下的界面相互作用能计算结果表明,6种高聚物与 LLM-105各晶面的结合能均为正值,结合强度从大到小 的顺序为:LLM-105/NBC≈LLM-105/Estane 5703> LLM-105/F₂₃₁₃≈LLM-105/F₂₃₁₄≈LLM-105/F₂₃₁₁> LLM-105/F₂₄₆₂。

(2)高聚物与LLM-105晶面的相互作用能中,范

德华力占据优势地位(约>90%),远远超过静电相互 作用。结合力最大的(101)晶面,在晶体中的显露面 最小,仅占总显露面的0.39%,而结合力小的两个晶面 (020)和(011),其显露面却占了很大的比例 (>60%)。这些模拟结果可为实验上LLM-105与高聚 物黏结性差,包覆效果不好提供一定的理论解释。

(3)通过相互作用能和界面结构的综合分析发现,界面结合力强的高聚物是能同时提供氢键良给体和良受体,可与LLM-105晶面上的一NO₂、一NH₂以及一N→O基团形成强氢键,大大增加静电作用力,因此在筛选LLM-105的高聚物时,最好具有一OH、一COOH、一NH等基团。基于该选择原则筛选的高聚物NBC,表现出了和Estane 5703相当的结合能力,表明该选择原则的合理性。

(4)基于 NPT 系综下的 MD 模拟结果表明,加入 6 种高聚物后,LLM-105 的力学性能改善均不理想。 和纯 LLM-105 相比,加入 Estane 5703、NBC 和 F₂₄₆₂的 力学性能稍有改善,加入 F₂₃₁₃和 F₂₃₁₁未有改善,而加入 F₂₃₁₄的力学性能则有所下降。

参考文献:

- [1] Tran T D, Pagoria P F, Hoffman D M, et al. Small-scale safety and performance cheracterization of new plastic bonded explosives containing LLM-105[R]. Lawrence Livermore National Laboratory, Livermore, CA 94551.
- [2] Tarver C M, Urtiew P A, Tran T D. Sensitivity of 2, 6-diamino-3, 5-dinitropyrazine-1-oxide[J]. *Journal of Energetic Materials*, 2005, 23(3): 183–203.
- [3] 田勇, 韩勇, 杨光成. 钝感高能炸药几点认识与思考[J]. 含能材料, 2016, 24(12): 1132-1135.
 TIAN Yong, HAN Yong, YANG Guang-cheng. Some understanding and thinking of insensitive high explosive[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24 (12): 1132-1135.
- [4] Ma H X, Song J R, Zhao F Q, et al. Crystal Structure, Safety performance and density-functional theoretical investigation of 2, 6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105)[J]. Chinese Journal of Chemistry, 2008, 26(11): 1997–2002.
- [5] 杨志剑,刘晓波,何冠松,等.混合炸药设计研究进展[J].含能材料,2017,25(1):2-11.
 YANG Zhi-jian, LIU Xiao-bo, HE Guan-song, et al. Advances in design and research of composite explosives [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25 (1):2-11.
- [6] Liu Z W, Xie H M, Li K X, et al. Fracture behavior of PBX simulation subject to combined thermal and mechanical loads[J]. *Polymer Testing*, 2009, 28(6): 627–635.
- [7] Jin A I, Jian-Jun L I, Jian-Bo C, et al. Kinetics of thermal decomposition reaction of LLM-105 based PBX explosives [J]. *Chinese Journal of Explosives & Propellants*, 2016, 39 (4) : 37-41.

- [8] Alexander E G, Fowzia Z, Jennifer M, et al. FY2014 LX-21 aging and compatibiligy[R]. Lawrence Livermore National Laboratory, CA, 2014, 94550.
- [9] Weese R K, Burnham A K, Turner H C, et al. Physical characterization of RX-55-AE-5 a formulation of 97.5% 2, 6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) and 2.5% Viton A
 [R]. Lawrence Livermore National Laboratory, CA, 2005. UCRL-CONF-214557.
- [10] Wang H J, Liu S S. Study on coating and technological conditions of LLM-105 [J]. Advanced Materials Research, 2011, 328-330: 1161-1166.
- [11] Xiao J, Huang H, Li J, et al. Computation of interface interactions and mechanical properties of HMX-based PBX with Estane 5703 from atomic simulation[J]. *Journal of Materials Science*, 2008, 43(17): 5685–5691.
- [12] Wang H J. The choice and application of binder in new energetic matierals [J]. Applied Mechanics & Materials, 2013, 330: 3-7.
- [13] Yu Y, Chen S, Li X, et al. Molecular dynamics simulations for

5, 5'-bistetrazole-1, 1'-diolate (TKX-50) and its PBXs[J]. *RSC Advances*, 2016, 6(24); 20034–20041.

- [14] 陶俊, 王晓峰, 赵省向,等. ε-CL-20/含能黏结剂复合体系结合 能及力学性能的模拟[J]. 含能材料, 2015, 23(4): 315-322.
 TAO Jun, WANG Xiao-feng, ZHAO Sheng-xiang, et al. Simulation and calculation for binding energy and mechanical properties of ε-CL-20/energetic polymer binder mixed system [J].
 Chinese Journal of Energetic Materials (Hanneng Cailiao), 2015, 23(4): 315-322.
- [15] Hooks D E, Ramos K J, Bolme C A, et al. Elasticity of crystalline molecular explosives [J]. *Propellants, Explosives, Pyrotechnics*, 2015, 40(3): 333–350.
- [16] Junying W, Shaohua J, Shusen C, et al. Molecular dynamic simulations for FOX-7 and FOX-7 based PBXs[J]. Journal of Molecular Modeling, 2018, 24(7): 145–153.
- [17] Wang X J, Xiao J J. Molecular dynamics simulation studies of the *e*-CL-20/HMX co-crystal-based PBXs with HTPB[J]. *Structural Chemistry*, 2017, 28(6): 1645-1651.

Molecular Dynamics Simulations for Interfacial Interactions and Mechanical Properties of LLM-105 with Polymers

GUO Rong¹, YANG Zhi-jian², DUAN Xiao-hui¹, PEI Chong-hua¹

(1. State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China; 2. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China)

Abstract: Interfacial interactions of polymers with 2, 6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) directly influence the surface boating effects of LLM-105. The analyses of interactional models and strength at the atomic and molecular level will help to reveal the micro-mechanism of the interfacial interactions. In this work, molecular dynamics (MD) method was used to simulate the interfacial interactions of fluoropolymers (F_{2311} , F_{2313} , F_{2314} , F_{2462}) and polyurethane (Estane 5703) with LLM-105 at different crystal faces. Interactional mode and strength between the polymers and LLM-105 at different crystal faces were analyzed, and the screening principle of the polymer binders was preliminarily proposed. According to the principle, nitrifying bacterial cellulose (NBC, a new polymer) was selected and the interactions between NBC and LLM-105 were simulated. The effect of six polymers on the mechanical properties of LLM-105 was discussed using static elastic constant analysis. The simulation results show that the bonding energies of all polymers with LLM-105 at various crystal faces are positive and the increasing order of bonding strength is LLM-105/NBC≈LLM-105/Estane 5703>LLM-105/F₂₃₁₃≈LLM-105/F₂₃₁₄≈LLM-105/F₂₃₁₁>LLM-105/F₂₄₆₂. The $(1 \ 0 \ 1)$ crystal face with the largest binding energy has the smallest exposed surface in the crystal (0.39%), while the $(0 \ 2 \ 0)$ and (0 1 1) crystal faces with smaller binding energies have the larger exposed surface (>60% in total). The Van der Waals force is dominant in the interfacial interactions and is much higher than the electrostatic interactions. The polymers possessing strong interactions with LLM-105 simultaneously have good hydrogen-bonding donors and acceptors. The effective isotropic modulus and the Cauchy pressure values show that NBC, Estane 5703, and F_{2462} can slightly improve, F_{2311} and F_{2313} has no influence, and F_{2314} reduce the mechanical properties of LLM-105.

Key words: 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105); polymers; interfacial interactions; mechanical propertiesCLC number: TJ55; O631.2*1Document code: ADOI: 10.11943/CJEM2018349

(责编:王艳秀)