超重力强化非均相催化臭氧矿化苯酚废水的响应面分析与优化

魏兴跃,吕 行,焦纬洲,刘有智

(中北大学山西省超重力化工工程技术研究中心,山西 太原 030051)

摘 要: 为了探究超重力强化非均相催化臭氧矿化苯酚废水最优工艺条件和各影响因素之间存在的交互关系,采用响应面法(RSM)进行实验优化。根据Box-Behnken Design(BBD)中心组合设计原理,设计四因素三水平实验,考察超重力因子(β)、初始pH值,液体流量(Q_L),臭氧浓度(C_{O3})对矿化苯酚废水的影响,构建该工艺的数学模型及确定优化后的工艺参数。结果表明,β与初始pH值存在极显著的交互关系,β与Q_L存在显著的交互关系。最优的工艺参数条件:β为60,初始pH值为5.47,C_{O3}为60 mg·L⁻¹,Q_L为90L·h⁻¹,预测值为91.54%,比实测值高0.97%(<2%),由此可知,二次数学模型对超重力强化非均相催化臭氧矿化苯酚废水的工艺条件的优化及苯酚的矿化率的预测具有良好的可靠性。此外,超重力技术与非均相催化臭氧矿化苯酚废水遵循·OH机理,30 min可对苯酚废水实现较为彻底的矿化。

关键词:超重力;非均相催化臭氧;苯酚废水;响应面法(RSM);降解机理
 中图分类号:TJ55;X703.1
 文献标志码:A

DOI:10.11943/CJEM2019124

1 引言

苯酚是一种重要的化工中间体,广泛应用于火炸 药合成、石油加工、焦化厂、农药厂、染料制造等行 业^[1-2]。在火炸药生产过程中,往往会排放硝基类芳香 族化合物,但由于对炸药废水矿化度低,导致水体中残 留了大量的酚类中间产物,因此酚类化合物也属于火 炸药行业中的一类污染物^[3]。其中苯酚废水毒性大、 难生物降解^[4],已被我国列入68种优先控制污染物黑 名单^[5]。目前,处理苯酚废水的主要方法有物理法、生 物法和高级氧化法^[6-8]。其中臭氧催化氧化法是一种高 级氧化技术,因操作条件温和,易于控制且在反应过程 中能产生氧化性强的羟基自由基(•OH且 *E*₀=2.8 V)在

收稿日期: 2019-05-06;	修回日期: 2019-06-07
网络出版日期: 2019-07	7-22

基金项目:国家自然科学基金资助(U186210097),山西省三晋学者 支持计划(201707),山西省重点研发计划项目(201903D321059) 作者简介:魏兴跃(1992-),女,硕士研究生,主要从事非均相催化 臭氧技术在火炸药废水处理方面的应用研究。

e-mail:1819804166@qq.com

通信联系人: 焦纬洲(1981-), 男, 教授, 主要从事超重力技术在废水处理方面的研究。e-mail: jwz0306@126.com

降解有机物废水中得到广泛应用。近几年,非均相催 化臭氧氧化技术因具有催化活性较高,容易分离且可 重复利用的优点在深度处理废水领域得到高度关注。 其催化剂采用的是金属氧化物、贵金属或以金属氧化 物、活性炭和沸石为载体负载的金属氧化物[9-11]。张 兰河等^[12]利用CoAl₂O₄/蜂窝陶瓷催化剂降解对苯二 酚,结果表明,30 min催化臭氧降解对苯二酚的去除 率高达81.2%,比单独臭氧氧化高19.7%;但催化臭氧 对对苯二酚废水的化学需氧量 COD(Chemical oxygen demand)的去除率低,仅达47.7%,分析原因是臭 氧的溶解度低且臭氧的传质属于液膜控制过程,导致 进入液相中的臭氧量较少,所以分解产生·OH含量较 低。超重力技术是一种新型过程强化技术[13],其实现 载体为旋转填料床(RPB),液体在离心力的作用下被 填料高速剪切成极薄的液膜和细小的液滴、液丝,增大 气液间的接触面积,加强气液微观混合效果,比传统设 备的传质速率提高1-3个数量级;此外,超重力装置具 有设备体积小,操作成本低,易于工业化生产的优 点[14-15],已被广泛应用于吸附[16]、吸收[17]和气液微观 混合[18]等领域。本实验以旋转填料床为反应设备,借 助其强有力的气液微观混合效果来加强臭氧的传质,

引用本文:魏兴跃, 吕行, 焦纬洲, 等. 超重力强化非均相催化臭氧矿化苯酚废水的响应面分析与优化[J]. 含能材料, 2020, 28(3):268-276. WEI Xing-yue, LÜ Xing, JIAO Wei-zhou, et al. Response Surface Analysis and Optimization of High Gravity-enhanced Heterogeneous Catalytic Ozonation for Mineralization of Phenol Wastewater[J]. *Chinese Journal of Energetic Materials (Hanneng Cailiao)*, 2020, 28(3):268-276.

Chinese Journal of Energetic Materials, Vol.28, No.3, 2020 (268-276)

提高臭氧的利用率,从而促进有机污染物的矿化程度。目前,非均相催化臭氧降解有机物废水主要采用单因素^[19]和正交两种方法^[20]。设计实验次数繁多,且每次只能考察单一因素对其影响规律,不能得到参数之间的交互关系。而响应面法采用统计学原理,可在有限的实验次数内探究单个因素及多个因素之间的交互关系,建立合理的数学模型用于预测实验结果,可大大减少实验的操作成本和运行费用^[21-23]。

为考察各因素对超重力强化非均相催化臭氧氧化 效能的影响规律及其之间的交互关系,本研究首次提 出采用响应面法中(Response Surface Method,RSM) 的中心组合设计 BBD(Box-Behnken Design)方法设 计实验。通过考察超重力因子(β)、初始 pH值,液体 流量(Q₁),臭氧浓度(C₀₃)这四个因素在矿化苯酚废水 之间存在的交互关系,建立以总有机碳(TOC)去除率 为响应值的数学模型,并对深度处理工艺的条件进行 优化,预测实验结果。此外,在该工艺条件下探究了降 解机理。

2 实验部分

2.1 试剂与材料

苯酚,分析纯,天津市光复精细化工研究所;氢氧化 钠,分析纯,天津市大陆化学试剂厂;稀硫酸,分析纯,洛 阳市化学试剂厂;硫代硫酸钠,分析纯,天津市北辰方正 试剂厂。叔丁醇(TBA),分析纯,天津市凯通化学试剂有 限公司。非均相催化剂(Fe-Mn-Cu/γ-Al₂O₃)为直径 3~5 mm的球状固体颗粒,且测定催化剂的零点电荷 值为6.3。纯氧(99.99%,山西泰能气体有限公司)。

苯酚模拟废水均由苯酚与去离子水配制而成,苯 酚废水初始浓度 100 mg·L⁻¹, pH 值由 1 mol·L⁻¹的 H₂SO₄和 1 mol·L⁻¹的 NaOH 溶液调节。pH 值由 pH 酸度计检测(上海先导科技 PHS-3C 型)。

2.2 实验仪器与实验方法

实验室自制的旋转填料床,转子内装有固体球状 催化剂(Fe-Mn-Cu/γ-Al₂O₃),孔隙率为0.46,转子内 径、外径、轴向高度分别为30,90,60 mm,臭氧发生器 (CF-G-3-20 g,青岛国林科技股份有限公司,产量为 20 g·h⁻¹)。

根据实验设计的实验组按如图1所示流程图进行 实验,反应在室温下采用半间歇反应操作,将钢瓶中的 纯氧气体经臭氧发生器产生一定浓度的O₃和O₂的混 合气,O₃和O₂混合气经气体流量计从旋转填料床的

CHINESE JOURNAL OF ENERGETIC MATERIALS

气体进口连续通入,沿轴向自下而上通过催化剂,将 100 mg·L⁻¹的2L苯酚模拟废水加入储液槽,后经蠕 动泵送入管路,经液体流量计计量后由液体进口通过 液体分布器喷入转子内缘,并在离心力的作用下沿径 向甩出与轴向穿过催化剂的气体错流接触,液体被甩 到外壁在重力作用下汇集到液体出口回到储液槽,循 环反应 30 min。起始样和 30 min 的样品各取5 mL, 后加入 0.5 mL的 Na₂S₂O₃(0.01 mol·L⁻¹)溶液对样品 中的残余臭氧进行淬灭反应,使用 0.22 μm滤膜对样 品过滤。尾气通过气体出口排出,经 KI溶液吸收后排 空。此外,在该体系下加入过量叔丁醇,在一定时间间 隔内取样过滤,探究该体系下的降解机理。

图1 RPB中非均相催化臭氧矿化苯酚实验装置图
1-氧气钢瓶; 2--臭氧发生器; 3-三通; 4--臭氧发生器检测器; 5--臭氧过滤器; 6,8-流量计; 7-旋转填料床;
9,12-阀门; 10-蠕动泵; 11-储液槽; 13-尾气接收装置
Fig.1 Schematic diagram for heterogeneous catalytic ozonation of phenol mineralization in RPB

1—oxygen cylinder; 2—ozone generator; 3—three-way value;
4—ozone gas detector; 5—ozone filter; 6, 8—flow meter;
7—rotating packed bed; 9, 12—valve; 10—peristaltic pump; 11—storage tank; 13—exhaust gas absorption device

2.3 分析方法

2.3.1 苯酚矿化浓度的测定

采用 TOC 分析仪(Aurora, 1030C OI, Analytical, USA),其测定条件如下:取样 0.5 mL采用燃烧法 测定 TOC 浓度,计算苯酚 TOC 去除率如式(1):

$$\eta_{\text{TOC}} = \frac{C_{\text{TO}} - C_{\text{T}}}{C_{\text{TO}}} \times 100\%$$
(1)

式中, η_{TOC} 为苯酚 TOC 的去除率, C_{T0} 为初始 TOC 浓度,mg·L⁻¹, C_{Tr} 为 TOC 剩余浓度,mg·L⁻¹。

2.3.2 苯酚矿化中间产物的测定

采用气相色谱-质谱联用技术(GC-MS, Thermo, 5977A-7890 MSD, USA)测定了苯酚废水降解过程

中的中间产物。色谱条件为:安捷伦 HP-Innovax (30 m×0.32 mm×0.25µm)毛细管柱,高纯氮(He)为载 气。温度程序开始于35 ℃(保持2 min),以5 ℃·min⁻¹ 的速度增加到100 ℃,以10 ℃·min⁻¹的速度增加到 200 ℃,以8 ℃·min⁻¹的速度增加到280 ℃,每次升温 程序后保温2 min。质谱条件:传输线温度280 ℃,电 离方式为电子电离(EI),离子源温度250 ℃,四极杆温 度150 ℃,电子能70 eV。

2.3.3 响应面实验设计

实验通过 Design Expert 8.0.5b 软件的 BBD 中心 组合设计原理,设计四因素三水平实验,以超重力因 子、初始 pH值,液体流量,臭氧浓度为变量探究超重 力强化非均相催化臭氧矿化苯酚废水的交互关系,以 TOC 去除率为响应值,反应 30 min 取样,以及构建二 次多项式数学模型。实验因素和水平设计见表1。

表1 实验因素和水平设计表

Table 1 The experimental factor and level design table

	factor						
loval	A	В	С	D			
level	high gravity	initial pH	ozone concentration	liquid flow			
	factor		/ mg•L ^{−1}	/L•h ⁻¹			
-1	20	4	50	65			
0	40	6	60	85			
1	60	8	70	105			

3 结果与讨论

3.1 响应面试验结果

采用 BBD 法设计四因素三水平试验,设计了 29 个试验点的响应面分析试验,零点试验进行了 5 次用 来估计误差,试验结果如表 2 所示。

3.2 响应面试验结果分析

3.2.1 方差分析和显著性检验

为了证明拟合模型的可靠性,根据表2试验结果, 得到表3所示的方差分析和显著性检验。由表3可 知,超重力因子 β ,初始pH值, C_{03} 和 Q_{L} 的P值都小于 0.01,四个单因素对超重力强化非均相催化臭氧矿化 苯酚废水的影响是极显著的,同时,变差来源 β 和初始 pH值之间作用的P值<0.01,表明 β 和初始pH值存在 极显著的交互关系,变差来源 β 和 Q_{L} 之间作用的P值< 0.05,表明 β 和 Q_{L} 之间存在显著交互关系。此外,根据 F检验值可以看出,影响矿化苯酚废水各因素的显著 性顺序为 $C_{03}>Q_{L}>\beta>$ 初始pH值。

表 2	恦	应	面	试	验	结	果
-----	---	---	---	---	---	---	---

Table 2 Results of the Response surface test experime
--

numbor	factor	factor					
number	A	В	B C D		— Y / %o		
1	-1	0	-1	0	76.0		
2	1	0	-1	0	79.89		
3	0	-1	0	1	82.1		
4	0	0	0	0	93.42		
5	1	0	0	1	85.3		
6	0	1	0	-1	74.11		
7	0	0	1	-1	78.64		
8	-1	0	0	1	77.65		
9	-1	0	0	-1	73.93		
10	1	1	0	0	81.73		
11	0	0	1	1	83.93		
12	0	-1	0	-1	76.27		
13	1	0	1	0	86.35		
14	-1	-1	0	0	78.46		
15	0	1	-1	0	75.23		
16	0	0	0	0	93.83		
17	0	-1	1	0	85.01		
18	0	-1	-1	0	76.76		
19	0	0	-1	1	77.31		
20	1	0	0	-1	75.1		
21	0	0	-1	-1	68.42		
22	0	1	0	1	78.24		
23	-1	0	1	0	83.54		
24	0	0	0	0	94.28		
25	-1	1	0	0	79.77		
26	0	0	0	0	92.87		
27	1	-1	0	0	87.25		
28	0	1	1	0	80.5		
20	0	0	0	0	00.96		

Note: Y is phenol mineralization rate.

3.2.2 二次回归模型的建立

利用 Design-Expert 8.05b 软件对表 2 中试验数据 进行分析,选择二阶经验模型进行数学方程拟合,建立 二次响应面回归方程,见式(2):

Y = 93.05 + 2.19A - 1.35B + 3.70C + 3.16D -1.71AB - 0.27AC + 1.62AD - 0.75BC - 0.40BD - 0.90CD - 5.13A² - 6.33B² - 6.8C² - 9.39D²

(2)

去除不显著项后建立二次响应面回归方程:

Y=93.05+2.19A-1.35B+3.70C+3.16D-1.71AB+1.62AD-5.13A²-6.33B²-6.8C²-9.39D²

结合表3和建立的二次回归方程可知,建立的

variance analysis and significance test								
source	sum of squares	degree of freedom	mean square	F	Р	significance		
model	1260.31	14	90.02	71.00	< 0.0001	**		
Α	57.51	1	57.51	45.36	< 0.0001	**		
В	21.79	1	21.79	17.19	0.0010	**		
С	163.98	1	163.98	129.34	< 0.0001	**		
D	120.08	1	120.08	94.71	< 0.0001	**		
AB	11.66	1	11.66	9.20	0.0089	**		
AC	0.29	1	0.29	0.23	0.6389	Insignificant		
AD	10.50	1	10.50	8.28	0.0122	*		
ВС	2.22	1	2.22	1.75	0.2069	insignificant		
BD	0.64	1	0.64	0.50	0.4891	insignificant		
CD	3.24	1	3.24	2.56	0.1322	insignificant		
A^2	170.66	1	170.66	134.60	< 0.0001	**		
B^2	260.26	1	260.26	205.28	< 0.0001	**		
C^2	300.21	1	300.21	236.78	< 0.0001	**		
D^2	571.69	1	571.69	450.91	<0.0001	**		
residual	17.75	14	1.27					
lack of fit	10.66	10	1.07	0.60	0.7655	insignificant		
pure error	7.09	4	1.77					
cor total	1278.06	28						

表3 方差分析和显著性检验

 Table 3
 Variance analysis and significance tes

Note: P \$0.05 is significant, indicated with *; P \$0.01 is extremely significant, indicated with **; P >0.05 is not significant, indicated with insignificant.

TOC 去除率模型 F 值为 71, P 值 <0.0001, 远小于 0.05, 表明整个模型可靠程度很高,且对响应面有影响 且影响程度不变的概率为 99.99%,即该模型对响应 面有稳定显著的影响。决定系数 R^2 和调整决定系数 R^2_{adj} 是检验模型可信度和准确性的重要指标, $R^2 \pi R^2_{adj}$ 越靠近 1, 表明模型越能有效反映实验的数据情况。本实验 R^2 =0.9861, R^2_{adj} =0.9722,通常当 R^2 >0.9时, 响 应面的拟合精度被认为可以满足要求^[24];均方的误差 和失拟项的 P 值均能反映模型与实际情况的差距,均 方的误差为 1.77, 失拟项的 P 值为 0.7655, 大于 0.05 为不显著,表明此模型与真实情况的差距较小;且 R^2_{adj} =0.9722 与 R^2_{pred} =0.9433 之差为 0.0289, 小于 0.2, 进一步表明预测值与实际值之间具有较好的相关性,证 明依据响应面法所建立的二次回归模型对超重力强化 非均相催化臭氧矿化苯酚废水的矿化效果是可行的。

3.3 模型各因素对响应值的影响

为了考察各因素及各因素之间的交互作用对苯酚 矿化率的影响,根据所建立的二次回归模型绘制响应 面的三维图及等高线图,如图2~图7所示。

从图 2~图 4可以发现,超重力因子β对苯酚的矿 化存在显著的影响。当初始 pH 值为 6,臭氧浓度为 60 mg·L⁻¹,液体流量为 85 L·h⁻¹,苯酚的矿化率随β呈

CHINESE JOURNAL OF ENERGETIC MATERIALS

现先增大后减小的趋势,原因是臭氧的溶解过程属于 液膜控制过程^[25],β增大,废水被催化剂填料剪切程度 增大,将液体剪切成薄的液膜和细小的液滴、液丝,增 大气液之间的接触面积,增大臭氧的溶解速率,使更多 的臭氧分子与催化剂接触,产生更多的·OH,进而大 幅度加快苯酚的矿化效果。但当β继续增大,液体被 高速地从旋转填料床的内径甩到外径,在床内停留时 间变短,来不及和错流的臭氧气体进行混合,使得臭氧 的溶解量降低,导致苯酚的矿化率有所下降。由表3 和图 2 的显著性检验可知, *B* 与初始 pH 值存在极显著 的交互关系,在 C_{Ω_3} 为60 mg·L⁻¹,初始pH值为6, β 为 40, Q₁为 85 mg·L⁻¹时, 苯酚的矿化率最大可达 94.28%。在一定的臭氧浓度和液体流量下,即使 pH 值较低,增大β到最优值时,可增大单位液体中臭氧的 溶解量,促进臭氧的分解,提高对苯酚的矿化效果。当 β 较低时,pH值由低增加到6时,同样也可提高苯酚的 矿化效果。原因是不同 pH 值会影响催化剂表面的羟 基含量。β值虽小,不能将液体剪切成理想的液体微 元,但随着 pH 值增大,催化剂表面的羟基含量增加, 有利于与催化剂接触的臭氧快速分解,从而提高对苯 酚的矿化效果。因此,超重力因子与初始pH值这两 个参数具有极显著的交互作用。

图2 超重力因子β与初始pH值对苯酚矿化率的影响

Fig.2 Effect of high gravity factor β and initial pH on phenol mineralization rate

图 3 超重力因子β与臭氧浓度Co3对苯酚矿化率的影响

Fig.3 Effect of high gravity factor β and ozone concentration C_{03} on phenol mineralization rate

图4 超重力因子β与液体流量Q_L对苯酚矿化率的影响

Fig.4 Effect of high gravity factor β and liquid flow Q_{L} on phenol mineralization rate

图5 初始pH值与臭氧浓度Co3对苯酚矿化的影响

Fig.5 Effect of initial pH and ozone concentration C_{03} on phenol mineralization rate

从图 2,图 5,图 6 可以看出,初始 pH 值对苯酚的 矿化存在显著的影响。当 β 为40,臭氧浓度为60 mg·L⁻¹, 液体流量为85 L·h⁻¹,苯酚的矿化率随初始pH值呈现 先增大后减小的趋势。初始pH值的大小影响催化剂 的表面电荷分布,从而影响苯酚矿化效能。催化剂在 零电荷点时,催化剂表面羟基密度最大^[26]。当pH值 为6时,溶液pH值接近催化剂表面的零点电荷,使得 进入液相的臭氧和苯酚有利于吸附在催化剂表面,此 时,催化剂表面羟基和臭氧作用能产生氧化性更强 的·OH,产生大量的·OH可将苯酚废水氧化,从而提 高苯酚的矿化效果。当pH值为4时,催化剂表面羟基 含量相对减少,臭氧和表面羟基反应产生一定数量 的·OH,使苯酚废水矿化;同时苯酚存在弱酸性,会发 生部分解离,催化剂表面带正电有利于对苯氧负离子 的吸附,因此,pH值从4增加到6时,溶液中会产生 的·OH数量增加,所以苯酚的矿化率呈增加趋势。而 随着 pH 值由 6 增加到 8,催化剂表面的羟基数目下 降,臭氧与表面羟基作用减少,产生的·OH数量下降, 同时,催化剂表面带负电,与苯酚解离以及降解产生的 小分子羧酸的解离之间存在排斥作用,导致苯酚的矿 化率下降。

从图3,图5,图7可以看出,臭氧浓度对苯酚的矿

化具有明显的影响规律。当β为40,初始pH值为6, 液体流量为85L·h⁻¹,苯酚的矿化率随臭氧浓度呈现 先增大后减小的趋势。原因是在其他参数一定时,增 大气相臭氧浓度,臭氧从气相进入液相的传质推动力 增大^[27],从而加快臭氧在溶液中的溶解度,在催化剂 催化作用下能将臭氧分解产生大量的·OH,明显提高 苯酚废水的矿化。当气相臭氧浓度继续增加,进入液 相中的臭氧会消耗游离的·OH,导致苯酚的矿化有下 降趋势。

从图 4,图 6,图 7 可以看出,液体流量对苯酚的矿 化具有显著的作用。苯酚的矿化率随着液体流量的增 加呈现先增加后减小的趋势。在一定的β和气体流量 条件下,液体流量增加到 85 mg·L⁻¹时,形成的液膜流 速增加,填料的润湿程度加大,填料的间隙以及外腔内 的液滴增多,使得单位质量液体中溶解的臭氧分子增 加,加快臭氧分解成·OH的速率,提高了苯酚的矿化 效果。但当液体流量继续增加,液膜厚度增加,臭氧的 传质速率变得缓慢^[28]。因而,·OH生成速率变得缓 慢,导致苯酚的矿化率下降。从表 3 和图 4 可以看出, β与液体流量存在显著的交互关系。同时,增大β与液 体流量,对苯酚的矿化作用都有促进作用。原因是两 者在一定范围内,催化剂填料对苯酚废水进行快速剪

Fig.6 Effect of initial pH and liquid flow $Q_{\rm L}$ on phenol mineralization rate

Fig.7 Effect of ozone concentration C_{03} and liquid flow Q_{L} on phenol mineralization rate

CHINESE JOURNAL OF ENERGETIC MATERIALS

切,使液体微元化,有利于增大单位液体中臭氧从气相 进入液相的溶解量,此时当pH值为6时,液相中臭氧 与催化剂表面羟基反应可以产生大量的·OH,对苯酚 废水实现高度矿化。当液体流量高于85 L·h⁻¹,流速 太大,与臭氧气流接触时间变短,造成液相臭氧浓度降 低^[29]。β值虽小,不能将液体剪切成细小的液体微元, 但随着液体流量增加,有助于弥补单位时间内进入液 相中的臭氧浓度,从而有利于苯酚的矿化效果的提 高。同理,减少液体流量,增大β值,可将低流速的液 体剪切成非常理想的液体微元,与错流接触的臭氧气 体完全混合,加快臭氧的传质,提高臭氧的分解速率, 从而也可提高苯酚的矿化效果。因此,β与液体流量 这两个参数具有显著的交互作用。

3.4 最优工艺参数的确定和验证

为了得到超重力强化非均相催化臭氧矿化苯酚废 水的最大去除率,利用 Design-Expert 8.05b 软件,求 得最优的工艺参数条件为:超重力因子β为60,初始 pH值为5.47,臭氧浓度 C₀₃为62.5 mg·L⁻¹,液体流量 Q₁为89.95 L·h⁻¹。此时,预测的苯酚矿化率为91.45%。 考虑到实验的可行性,操作条件选择:超重力因子β为 60,与初始 pH值为5.47,臭氧浓度 C₀₃为60 mg·L⁻¹, 液体流量 Q₁为90 L·h⁻¹。在此条件下,试验重复3次, 如图 8 所示。由图 8 可知,随着时间延长,30 min时苯 酚的平均矿化率为90.57%,比预测值低0.97%,(误差 <2%)。因此,超重力强化非均相催化臭氧矿化苯酚 废水的二次数学模型对工艺条件的优化及苯酚的矿化 率的预测具有良好的可靠性。

图8 苯酚矿化率随时间变化规律

Fig.8 Variation of phenol mineralization rate with time

3.5 降解机理分析

在超重力强化非均相催化臭氧体系中加入和未加 入叔丁醇对苯酚废水矿化的影响规律如图9所示,由 图9可知,在最佳操作条件下加入叔丁醇后,苯酚的矿 化率由90.57%下降到40.87%。众所周知,叔丁醇是 一种常用的·OH捕获剂,加入过量的叔丁醇对苯酚的 矿化存在明显地抑制作用,说明超重力强化非均相催 化臭氧氧化体系存在·OH机理。在超重力强化非均 相催化臭氧体系中矿化苯酚废水的中间产物GC-MS 图如图10。由图10可知,反应5min,苯酚在臭氧的 直接氧化和·OH间接氧化的共同作用下,将苯酚转化 为对苯二酚,邻苯二酚和对苯醌。当反应30min时, 苯酚消失,对苯二酚,邻苯二酚和对苯醌也进一步开 环,形成小分子羧酸(丙二酸和乙酸),这与图8所示的 随反应时间的延长,苯酚的矿化率逐渐增大结论 一致。

图9 在超重力强化非均相催化臭氧体系中加入和未加入叔丁 醇对苯酚废水矿化的影响规律

Fig.9 The mineralization rate of phenol in high gravity-enhanced heterogeneous catalytic ozonation system with or without tertiary butyl alcohol

图 10 在超重力强化非均相催化臭氧体系中矿化苯酚废水的 中间产物 GC-MS图

Fig. 10 GC-MS diagram of intermediate products of phenol mineralization in high gravity-enhanced heterogeneous catalytic ozonation system.

4 结论

(1) 实验通过响应面法的 BBD 中心组合设计原理,设计四因素三水平实验,以超重力因子、初始 pH 值,液体流量,臭氧浓度为变量探究超重力强化非均相

催化臭氧矿化苯酚废水的交互关系,得到矿化苯酚废 水各因素的显著性顺序为臭氧浓度 C₀₃>液体流量 Q₁> 超重力因子β>初始 pH值,且β与初始 pH值存在极显 著的交互关系,β与 Q₁存在显著的交互关系,其他各交 互项对苯酚矿化均无显著影响。

(2) 通过方差分析和显著性检验,建立的数学模型拟合精度较高。 R²=0.9861 接近1 且 R²_{adj}=0.9722 与 R²_{pred}=0.9433 之差小于 0.2,进一步表明预测值与实际值之间具有较好的相关性。所建立的二次回归模型对超重力强化非均相催化臭氧矿化苯酚废水的矿化效果是可行的。

(3)使用响应面法得出的最优的工艺参数条件为:超重力因子β为60,初始pH值为5.47,臭氧浓度 C₀₃为60 mg·L⁻¹,液体流量Q_L为90L·h⁻¹,预测值为 91.54%,与实测值相差0.97%,可知,此模型对超重力 强化非均相催化臭氧矿化苯酚废水的工艺条件的优化 是可靠的,同时超重力强化非均相催化臭氧矿化苯酚 废水这一体系遵循·OH机理,30 min内苯酚矿化较为 彻底,这一工艺条件为矿化实际苯酚废水提供了一定 的参考价值。

参考文献:

- [1] 任燕飞.非均相臭氧催化氧化-SBR组合工艺处理苯酚废水研究
 [D].北京:北京化工大学,2017.
 REN Yan-fei. The research on high concentration phenol wastewater treatment by combined heterogeneous catalytic ozonation and SBR process[D]. Beijing: Beijing University of Chemical Technology, 2017.
- [2] Karami T, Elyasi S, Amani T. Modeling and optimizing of electrocoagulation process in treating phenolic wastewater by response surface methodology: precise evaluation of significant variables[J]. International Journal of Environmental Science & Technology, 2018, 15(11): 2389–2398.
- [3] 常双君.典型炸药废水的超临界水氧化及其动力学研究[D].山西:中北大学,2008.
 CHANG Shuang-jun. Study on supercritical water oxidation and dynamics of typical explosive waste water[D]. Shan Xi: North University of China, 2008.
- [4] Kennedy L J, Vijaya J J, Kayalvizhi K, et al. Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process[J]. *Chemical Engineering Journal*, 2007, 132(1-3): 279–287.
- [5] 周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单[J].中国 环境监测,1990,6(4):3-5.
 ZHOU Wen-min, FU De-qian, SUN Zong-guang. Black list of priority controlled pollutants in water[J]. *China Environmental Monitoring*, 1990, 6(4): 3-5.
- [6] Ahmed S, Rasul M G, Martens W N, et al. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments [J]. *Desalination*, 2010, 261(1-2): 3-18.

- [7] Zeng Z Q, Zou H K, Li X, et al. Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed[J]. *Chemical Engineering Journal*, 2013, 229: 404–411.
- [8] Pan K L, Chen D L, Pan G T, et al. Removal of phenol from gas streams via combined plasma catalysis[J]. *Journal of Industrial and Engineering Chemistry*, 2017, 52: 108–120.
- [9] Meng F Q, Ma W, Zong P P, et al. Synthesis of a novel catalyst based on Fe(II)/Fe(III) oxide and high alumina coal fly ash for the degradation of o-methyl phenol [J]. *Journal of Cleaner Production*, 2016, 133: 986–993.
- [10] Qi L L, Yao J, You Hong, et al. Oxidation products and degradation pathways of 4-chlorophenol by catalytic ozonation with MnOx/γ-Al₂O₃/TiO₂ as catalyst in aqueous solution[J]. *Journal* of Environmental Science and Health, Part A, 2014, 49(3): 327–337.
- [11] Fajardo A S, Martins R C, Quinta-Ferreira R M. Treatment of a simulated phenolic effluent by heterogeneous catalytic ozonation using Pt/Al₂O₃. *Environmental Technology*, 2013, 34 (3): 301–311.
- [12] 张兰河,高伟围,陈子成,等. CoAl₂O₄/蜂窝陶瓷催化剂的制备 及其催化臭氧化性能[J]. 无机化学学报,2017,33(6): 985-992.

ZHANG Lan-he, GAO Wei-weil, CHEN Zi-cheng, et al. CoAl₂O₄/ceramic honeycomb catalyst: preparation and performance on catalytic ozonation in wastewater treatment[J]. *Chinese Journal of Inorganic Chemistry*, 2017, 33(6): 985–992.

- [13] Ramshaw C, Mallinson R. Mass Transfer Process. European Patent 2568B, 1979; U.S. Patent 4263255, 1981.
- [14] 刘有智. 超重力化工过程与技术[M]. 北京: 国防工业出版社, 2009: 1-5.
 LIU You-zhi. Chemical Engineering Process and Technology in High Gravity [M]. Beijing: National Defense Industry Press, 2009: 1-5.
- [15] Jiao W Z, Liu Y Z, Qi G S. Gas pressure drop and mass transfer characteristics in a cross-flow rotating packed bed with porous plate packing[J]. *Industrial & Engineering Chemistry Research*, 2010, 49(8): 3732–3740.
- [16] Lin C C, Liu H S. Adsorption in a centrifugal field: basic dye adsorption by activated carbon [J]. Industrial & Engineering Chemistry Research, 2000, 39(1): 161–167.
- [17] Zhang L L, Wu S Y, Gao Y, et al. Absorption of SO₂ with calcium-based solution in a rotating packed bed [J]. Separation and Purification Technology, 2019, 214: 148–155.
- [18] Pan S Y, Wang P C, Chen Q, et al. Development of high-gravity technology for removing particulate and gaseous pollutant emissions: Principles and applications [J]. *Journal of Cleaner Production 2017*; 149: 540–556.
- [19] Chang C C, Chiu C Y, Chang C Y, et al. Pt-catalyzed ozonation of aqueous phenol solution using high-gravity rotating packed bed[J]. *Journal of Hazardous Materials*, 2009, 168(2– 3): 649–655.
- [20] 秦月娇, 耿烁, 焦纬洲, 等. 用超重力技术强化 O₃/Fe(Ⅱ)工艺 深度氧化降解苯胺废水[J].含能材料, 2018, 26(5): 448-454.
 QIN Yue-jiao, GENG Shuo, JIAO Wei-zhou, et al. Deep oxidation degradation of aniline wastewater by O₃/Fe(Ⅱ) process enhanced using high-gravity technology[J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2018, 26(5): 448-454.

CHINESE JOURNAL OF ENERGETIC MATERIALS

- [21] 魏文杰,郑春梅,王天易,等. 苯并1,2,3,4-四嗪-1,3-二氧化物的硝化工艺[J].含能材料,2016,24(1):69-73.
 WEI Wen-jie, ZHENG Chun-mei, WANG Tian-yi, et al. Nitration process of benzo-1,2,3,4-tetrazine-1,3-dioxide[J]. *Chinese Journal of Energetic Materials* (Hanneng Cailiao), 2016, 24(1):69-73.
- [22] 邵明旺,王建,乔晓林,等.基于响应面中心复合设计的固体推进 剂摩擦感度理论[J].含能材料,2019,27(6):509-515.
 SHAO Ming-wang, WANG Jian, QIAO Xiao-lin, et al. Theory of friction sensitivity of solid propellants based on center composite design of response surface[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2019,27(6): 509-515.
- [23] Jiao W Z, Yu L S, Feng Z R, et al. Optimization of nitrobenzene wastewater treatment with O₃/H₂O₂ in a rotating packed bed using response surface methodology[J]. *Desalination and Water Treatment*, 2016, 57(42): 19996–20004.
- [24] 张东升,余丽胜,焦纬洲,等.基于响应面法的超声强化铁碳微 电解处理硝基苯废水工艺优化研究[J].含能材料,2018,26
 (2):178-184.
 ZHANG Dong-sheng, YU Li-sheng, JIAO Wei-zhou, et al. Treatment of nitrobenzene wastewater via ultrasonic enhanced

iron-carbon micro-electrolysis with response surface methodology[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2018, 26(2): 178–184.

[25] 刁金祥, 刘有智, 王贺, 等. 旋转填料床中 O₃/H₂O₂法处理 TNT

红水[J].含能材料,2007,15(3):281-284.

DIAO Jin-xiang, LIU You-zhi, Wang He, et al. O_3/H_2O_2 oxidative treatment of TNT red-water in a rotating packed bed[J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2007, 15(3): 281–284.

- [26] Chen C M, Yoza B A, Wang Y D, et al. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al₂O₃ catalyst[J]. *Environmental Science and Pollution Research*, 2015, 22(7): 5552–5562.
- [27] Kukuzaki M, Fujimoto K, Kai S, et al. Ozone mass transfer in an ozone-water contacting process with Shirasu porous glass (SPG) membranes-A comparative study of hydrophilic and hydrophobic membranes[J]. Separation and Purification Technology, 2010, 72(3): 347–356.
- [28] Zeng Z Q, Zou H K, Li X, et al. Ozonation of phenol with O₃/ Fe(II) in acidic environment in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2012, 51 (31): 10509–10516.
- [29] 李鑫,曾泽泉,邵磊.旋转填充床中多种高级氧化工艺的比较
 [J].山西农业大学学报,2011,31(1):86-90.
 LI Xin, ZENG Ze-quan, SHAO Lei. The comparison of advanced oxidation processes in decomposing acid red B in a rotating packed bed[J]. *Journal of Shanxi Agricultural University*.
 (*Natural Science Edition*), 2011, 31(1): 86-90.

Response Surface Analysis and Optimization of High Gravity-enhanced Heterogeneous Catalytic Ozonation for Mineralization of Phenol Wastewater

WEI Xing-yue, LÜ Xing, JIAO Wei-zhou, LIU You-zhi

(Research Center of Shanxi Province for High Cravity Chemical Engineering and Technology, North University of China, Taiyuan 030051, China)

Abstract: In order to explore the interaction between the optimal technologic conditions and influencing factors of high gravity-enhanced heterogeneous catalytic ozonation for phenol mineralization, response surface methodology (RSM) was used to optimize the experiment. According to the principle of Box-Behnken Design (BBD) center combination design, four-factor and three-level experiments were designed. The effect of high gravity factor (β), initial pH, liquid flow rate (Q_L), ozone concentration (C_{O3}) on the mineralized phenol wastewater was investigated. The mathematical model of the technology was established and the optimized technologic parameters were determined. Results show that there is an extremely significant interaction between β and Q_L . The optimal technologic parameters are as follows: β is 60, initial pH 5.47, C_{O3} 62.5 mg·L⁻¹, and Q_L 89.95 L·h⁻¹. The predicted value is 91.54%, 0.97% (<2%) higher than the measured value. It can be concluded that the obtained secondary mathematical model for the phenol mineralization via high gravity-enhanced heterogeneous catalytic ozonation has a good reliability for the optimization of technologic conditions and prediction of mineralization rate of phenol wastewater. In addition, the coupling between high gravity technology and heterogeneous catalytic ozonation technology is beneficial to the formation of OH radical, which reacts with organics, from the rapid decomposition of ozone in liquid phase. Thus, the phenol mineralization via high gravity-enhanced heterogeneous catalytic ozonation follows OH mechanism, and the phenol wastewater could be completely mineralized within 30 min.

Key words: high gravity; heterogeneous catalytic ozonation; phenol wastewater; response surface methodology (RSM); degradation mechanism

CLC number: TJ55; X703.1

Document code: A

DOI: 10.11943/CJEM2019124

(责编:张琪)