文章编号:1006-9941(2019)11-0936-06

DAAF 基不敏感 PBX 的热安全性

武碧栋^{1,2},解佳妮^{1,2},李旭阳^{1,2},刘淑杰^{1,2},安崇伟^{1,2},王晶禹^{1,2} (1. 中北大学环境与安全工程学院,山西太原 030051; 2. 山西省超细粉体工程技术研究中心,山西太原 030051)

摘 要: 为了研究3,3'-二氨基-4,4'-氧化偶氮呋咱(DAAF)基不敏感高聚物黏结炸药(PBX)的性能,采用水悬浮包覆技术分别制备出三种DAAF基PBX:DAAF/F₂₃₁₁(95/5)、DAAF/VitonA(95/5)、DAAF/EVA(95/5)。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)和机械感度测试仪对样品的形貌结构、热分解特性以及撞击感度、摩擦感度进行测试分析,考察了样品的快速烤燃和慢速烤燃特性。结果表明:DAAF/F₂₃₁₁为表面光滑的类球状、直径约450μm、包覆效果好,而DAAF/EVA和DAAF/VitonA表面粗糙、包覆效果较差;DAAF/F₂₃₁₁比DAAF的放热峰温滞后了0.9℃(升温速率为10℃・min⁻¹时),DAAF/F₂₃₁₁的活化能比原料DAAF提高了12.14 kJ·mol⁻¹,热爆炸临界温度提高了8.29℃;按照GJB772A-1997方法测试三者的撞击感度H₅₀均大于100 cm,摩擦感度均为0;快烤和慢烤试验的响应等级均为燃烧,满足不敏感弹药烤燃安全性要求。

关键词:3,3'-二氨基-4,4'-氧化偶氮呋咱(DAAF);高聚物黏结炸药(PBX);热分解;烤燃性能

中图分类号: TJ55;TQ560

文献标志码:A

DOI:10.11943/CJEM2019164

1 引言

随着武器系统的发展和战争环境的恶化,不敏感 弹药已经是世界各国弹药的发展趋势。不敏感弹药的 传爆序列同样要求使用不敏感传爆药,以确保整个爆 炸序列的不敏感程度与主装药匹配。目前,传爆药主 体炸药大多具有氮杂环,其能量密度高、低易损性较 好、安全性能优良且环境适应性较好,传统炸药很难同 时满足上述要求^[1]。同时,由于开发新型含能材料工 艺繁琐,耗时长,因此国内外学者的主要研究方向是对 含能材料进行改性处理^[2],如以高聚物为黏结剂或低 感炸药对炸药进行改性包覆,以此降低炸药的感度,提 高能量以及安全性能等^[3-4]。TATB是目前国内应用比 较多的钝感炸药,但其制作过程会污染环境,因此需要 寻找绿色钝感炸药代替它。

3,3'-二氨基-4,4'-氧化偶氮呋咱(DAAF)是一种

收稿日期:20	019-06-11;	修回日期:	2019-07-05
---------	------------	-------	------------

网络出版日期: 2019-09-27

基金项目:装备预研兵器工业联合基金,中北大学重点实验室开放研究基金资助项目(DXMBJJ2017-05)

作者简介:武碧栋(1985-),男,副教授,主要从事含能材料的制备、超细化与应用研究。e-mail:wubidong@nuc.edu.cn

高能钝感单质炸药^[5-11],具有以下三方面优势:(1)具有 正生成焓、热稳定性好、临界直径小,爆轰性能优于 TATB,对撞击、摩擦、静电火花等外界刺激都十分钝感; (2)与TATB具有相同的面-面π-π堆积模式、最小的空 间位阻,通过氢键形成牢固的层层结构,具备缓解外界 机械刺激的能力。同时,分子结构中不含硝基,在最大 程度上降低了感度,具有能量密度大的特性,达到了能 量与安全的匹配;(3)其合成污染小、毒性低,生产工艺 简便易行、操作安全,容易实现中试放大实验和工业化 生产。Badgujar等^[12]采用DAAF 替代RDX 合成的新型 熔铸炸药配方,表现出较高的热分解温度(283.4 ℃), 热稳定性明显提高,改善了爆轰性能和安全性能。

为了寻找TATB的替代物,本研究以氟橡胶F₂₃₁₁、 氟橡胶VitonA、乙烯-醋酸乙烯共聚物(EVA)为黏结剂, 采用水悬浮包覆技术制备了三种DAAF基PBX(DAAF/ F₂₃₁₁、DAAF/VitonA、DAAF/EVA),并对其结构、形貌、 热分解特性、机械感度及烤燃性能进行了分析。

2 实验部分

2.1 试剂与仪器

DAAF, 纯度 99.6%、平均粒径 300 nm, 自制; 去离子水, 太原风之源纯净水; 乙酸乙酯, 分析纯, 国药集

引用本文:武碧栋,解佳妮,李旭阳,等. DAAF 基不敏感 PBX 的热安全性[J]. 含能材料,2019,27(11):936-941. WU Bi-dong, XIE Jia-ni, LI Xu-yang, et al. Thermal Safety of DAAF-based Insensitive Polymer Bonded Explosives[J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*),2019,27(11):936-941.

Chinese Journal of Energetic Materials, Vol.27, No.11, 2019 (936-941)

团化学试剂有限公司;F₂₃₁₁是偏氟乙烯和三氟氯乙烯 (1:1)的共聚物、EVA的数均相对分子量3500~4500、 VitonA是偏氟乙烯和六氟丙烯共聚物,昆山捷尔兴绝 缘制品有限公司。

SHZ-D(Ⅲ)循环水多用真空泵,上海秋佐有限公司;202-0A烘箱,尚仪电热恒温鼓风干燥箱;VOSHIN-650W超声波细胞粉碎机无锡沃信仪器有限公司; S4700扫描电子显微镜(SEM),日本日立公司; DX-2700型X射线粉末衍射仪,中国丹东浩元公司; DSC-800型差示扫描量热仪,上海盈诺精密仪器有限 公司;烤燃试验用温度控制采集仪、热响应动态参数测 试仪,成都泰斯特电子信息有限责任公司。

2.2 样品的制备

钝感传爆药是不敏感弹药研究的关键技术之一, PBXN-7由TATB和RDX组成,理论爆速为8160m·s⁻¹, 是美国弹药中典型的不敏感传爆药。因此,本课题组 采用Urizar法^[13]设计了一种爆速与PBXN-7相当的 DAAF基不敏感传爆药配方,其制备工艺如下:采用水 悬浮包覆工艺,将1g的黏结剂(F₂₃₁₁或VitonA或EVA) 加入到乙酸乙酯中配成5%的黏结剂体系备用。将 19g的DAAF和380mL去离子水加入烧杯中进行超 声搅拌10min制备出DAAF悬浮液。调节水浴锅温度 60℃、真空度0.04 MPa、转速500r·min⁻¹,缓慢将黏结 剂体系滴加到DAAF悬浮液中,分别制备三种DAAF基 PBX(DAAF/F₂₃₁₁(95/5)、DAAF/VitonA(95/5)、DAAF/ EVA(95/5))。实验装置示意图如图1所示。

药柱制备:使用油压机将 DAAF/F₂₃₁₁以 90% 的理 论密度制备成尺寸为 **Φ**16 mm×32 mm 的圆柱形药 柱,并装配于小型烤燃弹中,用于快速烤燃试验和慢速

Fig. Schematic diagram of preparation of DAAF - based PBX device by aqueous suspension method

1-temperature adjustable water bath, 2-feed system,

3-vacuum pump

CHINESE JOURNAL OF ENERGETIC MATERIALS

烤燃试验(如图2所示)。

图 2 DAAF/F₂₃₁₁基 PBX 药柱 Fig. 2 DAAF/F₂₃₁₁ based PBX column

2.3 性能测试

采用 SEM 对样品进行形貌表征;采用差示扫描量 热仪对样品分别在 5,10,15,20 ℃·min⁻¹加热速率下 的热分解特性进行表征,样品质量≤1.0 mg,气氛为氮 气,气流量为 20 mL·min⁻¹,采用铝坩埚;使用 DX-2700型X射线粉末衍射系统对样品进行晶型表 征,步进角度为 5°~50°;按GJB772A-1997中601.3 方法测试撞击感度:2.5 kg落锤,样品量(35±1)mg; 按 602.1 方法测试摩擦感度:摆角 90°,压力 3.92 MPa,样品量(20±1)mg;自行设计了一种烤燃 试验方法:将药柱装入小型烤燃弹的壳体内,通过电加 热方式分别以升温速率1℃·s⁻¹和0.1℃·s⁻¹进行快速烤 燃和慢速烤燃试验,用热电偶测量反应时炸药表面的温 度,以试验后破片的大小和数量表明其反应类型,评估 传爆药的热安全性。

3 结果与讨论

3.1 形貌表征

对 DAAF/F₂₃₁₁、DAAF/VitonA、DAAF/EVA 进行整体形貌和局部放大进行分析,结果如图 3 所示。由图 3 可见, DAAF/F₂₃₁₁直径约 450 μm 的类球状,其表面光滑,这可能是因为 F₂₃₁₁中因存在"F-C-CI"键,使其受电场诱导能力明显提高,因此分子间范德华作用力较大,包覆比较紧密严实^[14]。DAAF/VitonA 呈不规则球状,表面粗糙; DAAF/EVA 呈现长条状,且空隙较大,这可能是因为 DAAF 与 EVA 的结合能较低所导致;根据包覆后颗粒的表面光滑性与致密程度,可知 F₂₃₁₁ 对 DAAF 的包覆效果最佳。

3.2 XRD分析

DAAF、DAAF/EVA、DAAF/VitonA 和 DAAF/F₂₃₁₁ 的 XRD 分析结果如图 4 所示。由图 4 可知, DAAF 的

含能材料 2019年 第27卷 第11期 (936-941)

图3 三种 DAAF 基 PBX 的 SEM 图

Fig. 3 SEM images of three DAAF-based PBXs

图4 原料 DAAF 和 DAAF 基 PBXs 的 XRD 图

Fig. 4 XRD patterns of raw materials DAAF and DAAF-based PBXs

主要特征衍射峰为13.31°、18.29°、19.01°、21.62°、 27.08°、28.61°,包覆后的DAAF都有相同的特征峰且 衍射角基本一致,只是峰强变弱,峰形变宽,这是因为 PBX中的高聚物具有明显的非晶体特性,其在空间分布 上是无规则周期性的,减弱了DAAF衍射峰的强度。

3.3 热分析

以升温速率10℃·min⁻¹为例,DAAF/F₂₃₁₁、DAAF/

VitonA、DAAF/EVA与DAAF的DSC曲线如图5所示。 由图5可见,DAAF/F₂₃₁₁、DAAF/VitonA、DAAF/EVA与DAAF的峰型类似,均只有一个放热峰,其中DAAF/ F₂₃₁₁和DAAF/VitonA比DAAF的放热峰温(261.2 $^{\circ}$)分别滞后了0.9 $^{\circ}$ 和0.2 $^{\circ}$,表明F₂₃₁₁和VitonA黏结剂降低了DAAF热分解速度,延缓了其分解过程,使得DAAF/F₂₃₁₁和DAAF/VitonA分解峰温有所提高;而DAAF/EVA比DAAF的放热峰温提前了2.9 $^{\circ}$,表明EVA黏结剂加快了DAAF热分解速度。从以上数据可以看出,DAAF/F₂₃₁₁的放热峰峰值温度最高,表明其耐热性最好。

图 5 DAAF 和 DAAF 基 PBX 的 DSC 曲 线 图 (升温速率 10 ℃·min⁻¹)

Fig.5 DSC curves of DAAF and DAAF-based PBXs (heating rate for 10 \degree C · min⁻¹)

3.4 非等温反应动力学和热力学参数

在 5,10,15 和 20 ℃·min⁻¹四个不同的升温速率 下测量了 DAAF 和三种 PBX 的主要放热分解峰温,以 此为基础采用 Kissinger 法^[15]、Ozawa 法^[16]、Starink 法^[17]三种方法计算了其表观活化能 *E* 和指前因子 *A*, 结果见表 1。同时采用公式(1)^[18]计算了升温速率趋 近 0时的峰顶温度(T_{p0})、热爆炸临界温度(T_{b})、活化熵 (ΔS^{*})、活化焓(ΔH^{*})、吉布斯自由能(ΔG^{*})。结果 见表 1。

$$\begin{cases} T_{pi} = T_{p0} + \alpha\beta + b\beta^{2} + c\beta^{3} \\ T_{b} = \frac{E - \sqrt{E^{2} - 4ERT_{p0}}}{2R} \\ A = \frac{k_{B}T}{h} e^{\Delta S^{*}/R} \\ \Delta H^{*} = E - RT \\ \Delta G^{*} = \Delta H^{*} - T\Delta S^{*} \end{cases}$$
(1)

式中, β 为升温速率,K·min⁻¹; T_{pi} 为升温速率 β 时的峰温,K; T_{p0} 为升温速率 β 趋于0时峰温,K; T_{b} 为热爆炸临界温度,K; a_{b},c 为常数;E为计算值E的平均值,

表 1 非等温 DSC 法测得 DAAF 基 PBXs 的放热分解反应的动力学参数 **Table 1** Kinetic parameters of exothermic decomposition reaction of DAAF-based PBXs measured by non-isothermal DSC method $T_p \text{ of } \beta (5,10,15,20)$ *E* sample / ℃·min⁻¹ / kJ·mol⁻¹ \overline{E} $|g(A/s^{-1}) \xrightarrow{T_p 0} T_b$ $\Delta S^{\epsilon} \Delta H^{\epsilon} \Delta G^{\epsilon}$

ample / °C∙min⁻¹			/ kJ∙mol⁻¹	/ kJ•mol ⁻¹		$lg(A/s^{-1})$	p0		ΔS^{\neq}	$\Delta H^{\scriptscriptstyle \neq}$	$\DeltaG^{\scriptscriptstyle\neq}$			
	5	10	15	20	Kissinger	Ozawa	Starink	/кј•шог		/ C	/ C			
DAAF	253.6	261.2	264.0	270.3	194.46	203.36	195.34	197.72	15.93	232.90	244.15	47.14	190.25	166.39
DAAF/EVA	248.9	258.3	263.2	269.9	150.36	159.21	151.25	153.61	11.58	228.70	243.13	-35.87	146.19	164.19
DAAF/VitonA	255.5	261.4	264.2	271.1	206.06	214.98	206.95	209.30	17.06	239.30	250.18	68.78	201.80	166.55
DAAF/F ₂₃₁₁	256.3	262.1	265.2	271.9	206.58	215.51	207.47	209.86	17.08	241.50	252.44	69.12	202.30	166.73

Note: *E* is apparent activation energy, kJ·mol⁻¹; *A* is the value of the pre-factor calculated by the Kissinger method.; T_{p0} is the peak temperature when the heating rate β tends to zero. T_b is the thermal explosion critical temperature; ΔS^* is the entropy of activation, kJ·mol⁻¹; ΔH^* is the enthalpy of activation, kJ·mol⁻¹; ΔG^* is the free energy of activation, kJ·mol⁻¹.

kJ·mol⁻¹; *A*为通过 Kissinger 法计算的指前因子; k_{B} 为 波尔茨曼常数, 1.381×10⁻²³ J·K⁻¹; h 为普朗克常数, 6.626×10⁻³⁴ J·s_o

表1数据分析表明,DAAF/F₂₃₁₁的表观活化能 (209.86 kJ·mol⁻¹)和热爆炸临界温度(252.44 $^{\circ}$)都 是最高的,表明其在分解时需要更高能量激活,安全性 更高、耐热性更好。同时 ΔG "值均大于零,证明三种 PBX热分解过程中分子的活化反应为非自发过程,需 要从外界吸收能量;DAAF/F₂₃₁₁的 ΔS 值最高,说明其 反应过程中的分解产物最多;DAAF/F₂₃₁₁的 ΔH "值最大, 表明需要从外界吸收更多的能量才能发生化学反应。 因此,以F₂₃₁₁为黏结剂包覆DAAF后热稳定性更好。

3.5 机械感度

按GJB772A-1997方法测试三种DAAF基PBX的 H₅₀均大于100 cm,摩擦感度均是0,表明DAAF基 PBX十分钝感。这是因为F₂₃₁₁、VitonA及EVA等黏结 剂被填充在DAAF颗粒之间,使炸药颗粒间的接触减 少,同时减少了炸药颗粒的裂痕和瑕疵,起到了缓冲保 护作用,从而有效减少了体系内热点的形成,降低了炸 药机械感度和摩擦感度。

a. fast cook-off test

图6 DAAF/F₂₃₁₁烤燃试验后零件图

Fig. 6 Photos of devices after fast cook-off test and slow cook-off test of $DAAF/F_{2311}$

3.6 烤燃性能

由于 DAAF/F₂₃₁₁ 的包覆效果和耐热性比 DAAF/ EVA、DAAF/VitonA好,所以将其制成药柱进行快烤和 慢烤试验。按照烤燃试验响应剧烈程度可分为轻微燃 烧、燃烧、爆燃、爆炸和爆轰等 5 个等级^[19],其分类标准 见表 2。DAAF/F₂₃₁₁的快烤和慢烤实验结果见图 6。由 图 6 可见,DAAF/F₂₃₁₁快烤和慢烤后套筒均保持完整, 上下端面完整,装药壳体有轻微的形变,螺栓的弯曲程 度和剪切程度较低,反应后未发生明显的破裂,所以,

表2 烤燃试验响应剧烈程度分类标准

 Table 2
 Classification criteria for response level of burning test

reaction level	reaction phenomenon			
mild burning	the device has only minor or no damage.			
huming	the plates and steel sleeves have slightly			
burning	deformation.			
deflagration	the plates have obvious deformation, and			
denagration	steel sleeves are broken.			
	the charging shell is broken into a plurali-			
explosion	ty of pieces, and the lower end cover is			
	deformed			
detonation	The plates and steel sleeves are broken.			

b. slow cook-off test

CHINESE JOURNAL OF ENERGETIC MATERIALS

根据表2判断,快烤和慢烤试验响应等级均属于燃烧。

4 结论

(1)以 F₂₃₁₁、VitonA、EVA 为黏结剂,采用水悬浮包
 覆技术制备出三种 DAAF 基 PBX,其中 DAAF/F₂₃₁₁基
 PBX 炸药颗粒为表面光滑的类球状,直径约 450 μm,
 包覆效果较好; DAAF/EVA 和 DAAF/VitonA 表面粗
 糙、包覆效果较差。

(2) DAAF/F₂₃₁₁和 DAAF/VitonA 比 DAAF 的 热爆 炸临界温度分别提高了 8.29 ℃和 6.03 ℃,比 DAAF 的 活化能分别提高了 12.14 kJ·mol⁻¹和 11.58 kJ·mol⁻¹, 表明 F₂₃₁₁和 VitonA 黏结剂降低了 DAAF 热分解速度, 延缓了其分解过程。

(3) 三种 DAAF 基 PBX 的撞击感度 H₅₀ 均大于 100 cm,摩擦感度均为0%。

(4) DAAF/F₂₃₁₁ 的快烤和慢烤实验响应等级均属 于燃烧,表明 DAAF 有望作为不敏感炸药使用。

参考文献:

[1] 肖春.不敏感混合炸药发展现状[C]//OSEC首届兵器工程大会 论文集.重庆, 2017:252-256 XIAO Chun. Development status of insensitive mixed explo-

sives [C]//Proceedings of the first OSEC weapons engineering conference. Chongqing, 2017:252-256

- [2] Elbeih A, Zeman S, Pachman J. Effect of polar plasticizers on the characteristics of selected cyclic nitramines[J]. Central European Journal of Energetic Materials, 2013, 10(3): 339–350.
- [3] 李丹, 王晶禹, 姜夏冰, 等. 硬脂酸包覆超细 RDX 及其撞击感度
 [J]. 火炸药学报, 2009, 32(1): 40-43.
 LI Dan, WANG Jing-yu, JIANG Xia-bing, et al. Ultra-fine
 RDX coated with stearic acid and its impact sensitivity [J].
 Journal of Explosives & Propellants, 2009, 32(1): 40-43.
- [4] 李玉斌,黄亨建,黄辉,等.高品质HMX的包覆降感技术[J]. 含能材料,2012,20(6):680-684.
 LI Yu-bin,HUANG Heng-jian,HUANG Hui, et al. Desensitizing technology of high quality HMX by coating [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2012, 20 (6): 680-684.
- [5] 吴永炎. 超细 TATB 的制备及 TATB 基传爆药配方设计初探[D]. 太原:中北大学, 2013.
 WU Yong-yan. Preparation of ultrafine TATB and preliminary study on formula design of TATB-based booster [D]. Taiyuan: North University of China, 2013.
- [6] 雷英春.TATB基钝感传爆药配方设计及制备研究[D].太原:中 北大学, 2015.
 LEI Ying-chun. Design and preparation of TATB-based insensitive booster [D].Taiyuan: North University of China, 2015.
- [7] 张朝阳. 含能材料能量-安全性间矛盾及低感高能材料发展策略 [J]. 含能材料, 2018, 26(1): 2-10.

ZHANG Chao-yang. On the energy & safety contradiction of energetic materials and the strategy for developing low-sensitive high-energetic materials [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2018, 26(1): 2–10.

- [8] Francois E G, Chavez D E, Sandstrom M M. The development of a new synthesis process for 3, 3'-diamino-4, 4'-azoxyfurazan (DAAF) [J]. Propellants, Explosives, Pyrotechnics, 2010, 35(6): 529-534.
- [9] LI Xu-yang, WU Bi-dong, LIU Shu-jie, et al. An insensitive booster explosive: DAAF surface-coated with VitonA [J]. Central European Journal of Energetic Materials, 2018, 15 (3): 445-455.
- [10] 李洪珍,黄明,黄奕刚,等.3,3'-二氨基-4,4'-偶氮呋咱及其氧 化偶氮呋咱的研究进展[J].含能材料,2005,13(3): 192-195..

LI Hong-zhen, HUANG Ming, HUANG Yi-gang, et al. Research progress of 3,3'-diamino-4,4'-azofurazin and its oxidation of azofurazin [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2005, 13(3): 192–195.

- [11] 孟俞富,王小旭,张勇,等.3,3'-二氨基-4,4'-偶氮呋咱的合成及纯化[J].火炸药学报,2018,41(6):27-31.
 MENG Yu-fu, WANG Xiao-xu, ZHANG Yong, et al. Synthesis and purification of 3,3'-diamino-4,4'-azofurazin [J]. Journal of Explosives & Propellants, 2018, 41(6):27-31.
- Badgujar D M, Talawar M B. Thermokinetic decomposition and sensitivity studies of 4, 4' - diamino - 3, 3' - azoxyfurazan (DAAF)-based melt cast explosive formulations [J]. *Journal of Energetic Materials*, 2018, 37(1): 1–9.
- [13] Greenberg B L, Kalyon D M, Melekerol, et al. Analysis of slurry-coating effectiveness of CL-20 using grazing incidence X-ray diffraction [J]. *Journal of Energetic Materials*, 2003, 21(3): 185–199.
- [14] 宋华杰.TATB/氟聚物复合材料的界面作用和力学性能研究
 [D].北京:中国工程物理研究院北京研究生部,2000.
 SONG Hua-jie. Study on interfacial interaction and mechanical properties of TATB/fluoropolymer composites [D]. Beijing: Graduate School of Engineering, China Academy of Engineering Physics, 2000.
- [15] Kissinger H E. Reaction kinetics in fifferential thermal analysis
 [J]. Analytical and Bioanalytical Chemistry, 1957, 29(11): 1702-1706.
- [16] Ozawa T. A new method of analyzing thermogravimetric data
 [J]. Bulletin of the Chemical Society of Japan. 1965, 11(38): 1881–1886.
- [17] Boswell P G. On the calculation of activation energies using a modified Kissinger method [J]. Journal of Thermal Analysis and Calorimetry. 1980, 38(11): 353-358.
- [18] ZHANG Tong-lai, HU Rong-zu, XIE yi, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC [J]. *Thermochimica Acta*, 1994, 244(244): 171–176.
- [19] 刘文杰.传爆药烤燃响应特性的数值仿真及试验研究[D].太原:中北大学,2016.
 LIU Wen-jie. Numerical simulation and experimental study on the response characteristics of blasting combustion and combustion[D]. Taiyuan: North University of China, 2016.

Thermal Safety of DAAF-Based Insensitive Polymer Bonded Explosives

WU Bi-dong, XIE Jia-ni, LI Xu-yang, LIU Shu-jie, AN Chong-wei, WANG Jing-yu

(1. School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China; 2. Shanxi Province Ultrafine Powder Engineering Technology Research Center, Taiyuan 030051, China)

Abstract: In order to study the properties of 3,3'-diamino-4,4'-azoxyfurazan (DAAF)-based insensitive high polymer bonded explosives (PBX), three kinds of DAAF-based PBXs (DAAF/EVA (95/5), DAAF/Viton A (95/5) and DAAF/F₂₃₁₁ (95/5)) were prepared by water suspension coating technique. The morphology structure, crystal form, thermal decomposition characteristic and mechanical sensitivity were analyzed by scanning electron microscopy (SEM), X-ray diffractometer (XRD), differential scanning calorimeter (DSC), impact and friction sensitivity apparatus. The fast and slow cook-off behaviors were examined. The DAAF/F₂₃₁₁ was well coated which had a smooth spherical shape with 450 μ m in diameter, while DAAF/EVA and DAAF/VitonA were poorly coated with rough surface. The exothermic peak temperature of DAAF/F₂₃₁₁ was 0.9 °C lower than that of DAAF (when the heating rate was 10 °C ·min⁻¹). The activation energy and the critical temperature of thermal explosion of DAAF/F₂₃₁₁ was 12.14 kJ·mol⁻¹ and 8.29 °C higher than that of the raw DAAF, respectively. According to the GJB772A–1997 method, the impact sensitivity H_{50} of the three DAAF-based PBXs were greater than 100 cm, and the friction sensitivity was 0. The response level of the fast and slow cook-off tests was burning, which satisfied the safety requirements for insensitive ammunition. **Key words:** 3,3'-diamino-4,4'-azoxyfurazan (DAAF);polymer bonded explosive (PBX);thermal decomposition;cook-off

 CLC number: TJ55;TQ560
 Document code: A
 DOI: 10.11943/CJEM2019164

(责编: 王艳秀)