CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
火灾环境下含炸药结构传热问题的数值模拟
作者:
作者单位:

(中国工程物理研究院总体工程研究所, 四川 绵阳 621999)

作者简介:

吴松(1986-),男,硕士研究生,主要从事热分析及武器系统热安全研究。e-mail: wusong@zju.edu.cn

通讯作者:

基金项目:

中国工程物理研究院总体工程研究所创新基金(13cxj07)


Numerical Simulation of Heat Transfer Problems in Structure with Explosive under Fire
Author:
Affiliation:

(Institute of System Engineering, CAEP, Mianyang 621999, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了解火灾环境下含炸药结构的热响应行为, 针对其涉及的主要传热学问题, 建立了池火灾火焰温升数值模型, 碳/酚醛烧蚀层高温热解吸热数值模型, 空气夹层复合传热数值模型, 以及炸药受热分解放热数值模型。用所建数值模型, 计算并获得了含炸药结构在不同温升条件下(恒定值1073 K、1273 K及本研究所提的火焰实测温升曲线)、不同火焰辐射率(0.1~0.9)和不同空气夹层间壳体表面辐射率(0.1~0.9)下的温度响应和热点火延滞时间。结果表明:火烧30 min情况下, 火焰温度为1273 K时, 内部炸药在28.92 min已经发生热点火现象。火焰温度为1073 K和实测温升曲线时, 内部炸药最高温度分别为448 K和535 K。火焰辐射率从0.9降低到0.1时, 内部炸药最高温度由535.4 K降低到344.6 K, 热点火延滞时间由1917 s增加到3520 s。空气夹层间壳体表面辐射率由0.9降低到0.1时, 内部炸药最高温度由535.4 K降低到329.0 K, 热点火延滞时间由1917 s增加到3739 s。

    Abstract:

    To understand the thermal response behavior of the structure with explosive under fire circumstance, in view of some related main heat transfer problems, the numerical models of pool fire′s temperature rise heat transfer, carbon/bakelite ablatant′s high temperature endothermic decomposition, inner air layer′s complex heat transfer and explosive′s exothermic decomposition were established. The thermal response and thermal ignition delay time for the structure with explosive under the conditions of different temperature (constant value 1073 K, 1273 K, and measured temperature rise curve proposed in this work), different fire′s emissivity (0.1-0.9) and different surface emissivity for the shell with different air gap (0.1-0.9) were calculated and obtained using the established numerical models. Results show that the thermal ignition phenomenon of the inner explosive occurrs at 28.92 min when the fire′s temperature is 1273 K in 30 min fire case. The highest temperature of inner explosive is 448 K and 535 K, respectively when the fire′s temperature is 1073 K and real temperature rise curve. The highest temperature of the explosive decreases from 535.5 K to 344.6 K and the thermal ignition delay time increases from 1917 s to 3520 s when the fire′s emissivity reduces from 0.9 to 0.1. The highest temperature of the explosive decreases from 535.5 K to 329.0 K and the thermal ignition delay time increases from 1917s to 3739s when the surface emissivity for the shell with air gap reduces from 0.9 to 0.1.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

吴松,李明海,张中礼.火灾环境下含炸药结构传热问题的数值模拟[J].含能材料, 2014, 22(5):617-623. DOI:10.3969/j. issn.1006-9941.2014.05.008.
WU Song, LI Ming-hai, ZHANG Zhong-li. Numerical Simulation of Heat Transfer Problems in Structure with Explosive under Fire[J]. Chinese Journal of Energetic Materials, 2014, 22(5):617-623. DOI:10.3969/j. issn.1006-9941.2014.05.008.

复制
历史
  • 收稿日期: 2013-11-19
  • 最后修改日期: 2014-03-24
  • 录用日期: 2014-04-01
  • 在线发布日期: 2014-10-29
  • 出版日期: