CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
HNF的热分解动力学和热安全性
作者:
作者单位:

(南京理工大学化工学院, 江苏 南京 210094)

作者简介:

孙笑(1990-),女,硕士研究生,主要从事推进剂的研究。e-mail: 150208232@163.com 通信联系人: 周新利(1973-),男,副研究员,主要从事含能材料的研究。e-mail: xinlizhou@aliyun.com

通讯作者:

周新利(1973-),男,副研究员,主要从事含能材料的研究。e-mail: xinlizhou@aliyun.com

基金项目:


Thermal Decomposition Kinetics and Thermal Safety of HNF
Author:
Affiliation:

(School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了解硝仿肼(HNF)的热分解动力学和热安全性, 用真空安定性试验(VST)、差示扫描量热法(DSC)和热重法(TG)研究了HNF的热分解特性。根据HNF在升温速率为5, 10, 15, 20 ℃·min-1时的DSC曲线的峰温和TG曲线的分解深度(α), 分别用Kissinger法和Ozawa法计算了HNF热分解反应的表观活化能(EkEa)和指前因子(Ak)、提出了描述HNF放热分解过程的动力学方程。计算了HNF热分解反应的热力学参数(活化自由能ΔG, 活化焓ΔH和活化熵ΔS)和HNF的热安全性参数(自发火温度Tbpo和自加速分解温度TSADT)。结果表明, HNF的放气量为0.41 mL·g-1, 不超过2 mL·g-1的标准, 显示HNF有良好的热安定性。HNF吸热熔融后的放热分解反应过程可分两个阶段。Ek=257.10 kJ·mol-1, Ak =1.74×1033s-1, ΔG=103.37 kJ·mol-1、ΔH=253.82 kJ·mol-1, ΔS=380.78 J·K-1·mol-1, Tbpo=400.28 K和TSADT=395.10 K。放热分解反应的动力学方程可描述为:对α= 0.20~0.65的第一阶段$ {\rm{d}}\alpha /{\rm{d}}t = kf\left( \alpha \right) = A{e^{ - \frac{E}{{RT}}}}f\left( \alpha \right) = 5.14 \times {10^{21}} \times \left( {1 - \alpha } \right){{\rm{[}} - {\rm{ln}}\left( {1 - \alpha } \right)]^{\frac{1}{2}}}{\rm{exp}}( - 1.81 \times {10^4}/T) $α= 0.65~0.80的第二阶段$ {\rm{d}}\alpha /{\rm{d}}t = kf\left( \alpha \right) = A{e^{ - \frac{E}{{RT}}}}f\left( \alpha \right) = 3.30 \times {10^{14}} \times \left( {1 - \alpha } \right){{\rm{[}} - {\rm{ln}}\left( {1 - \alpha } \right)]^{{\rm{ - }}1}}{\rm{exp}}( - 1.33 \times {10^4}/T) $

    Abstract:

    To understand the thermal decomposition kinetics and thermal safety of hydrazinium nitroformate (HNF), thermal decomposition characteristics of HNF were studied by vacuum stability test(VST), differential scanning calorimetry (DSC) and thermogravimetry (TG). According to peak temperatures of DSC curves and conversion degrees(α) of TG curves at 5, 10, 15 ℃·min-1 and 20 ℃·min-1, the apparent activation energy(Ek and Ea) and pre-exponential factor (Ak)for thermal decomposition reaction of HNF were calculated by Kissinger′s method and Ozawa′s method, respectively. The kinetic equations describing the exothermic decomposition process of HNF were presented. Thermodynamic parameters (free energy of activation ΔG, enthalpy of activation ΔH and entropy of activation ΔS) for thermal decomposition reaction of HNF and thermal safety parameters (critical temperature of thermal explosion Tbpo and self-accelerating decomposition temperature TSADT) for HNF were calculated. Results show that the volume of gas evolved for HNF is 0.41 mL·g-1, which does not exceed the standard of 2 mL·g-1, revealing that HNF has good thermal stability. The exothermic decomposition process of HNF after melting can be divided into two stages. Ek=257.10 kJ·mol-1, Ak=1.74×1033 s -1, ΔG=103.37 kJ·mol-1, ΔH=253.82 kJ·mol-1, ΔS=380.78 J·K-1·mol-1 , Tbpo=400.28 K and TSADT=395.10 K. The kinetic equation of exothermic decomposition reaction may be described as: for the first stage in the α range of 0.20~0.65, $ {\rm{d}}\alpha /{\rm{d}}t = kf\left( \alpha \right) = A{e^{ - \frac{E}{{RT}}}}f\left( \alpha \right) = 5.14 \times {10^{21}} \times \left( {1 - \alpha } \right){{\rm{[}} - {\rm{ln}}\left( {1 - \alpha } \right)]^{\frac{1}{2}}}{\rm{exp}}( - \frac{{1.81 \times {{10}^4}}}{T}) $, and for the second stage in the α range of 0.65~0.80, $ {\rm{d}}\alpha /{\rm{d}}t = kf\left( \alpha \right) = A{e^{ - \frac{E}{{RT}}}}f\left( \alpha \right) = 3.30 \times {10^{14}} \times \left( {1 - \alpha } \right){{\rm{[}} - {\rm{ln}}\left( {1 - \alpha } \right)]^{{\rm{ - }}1}}{\rm{exp}}(\frac{{ - 1.33 \times {{10}^4}}}{T}) $.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

孙笑,王娟,周新利. HNF的热分解动力学和热安全性[J].含能材料, 2014, 22(6):774-779. DOI:10.11943/j. issn.1006-9941.2014.06.012.
SUN Xiao, WANG Juan, ZHOU Xin-li. Thermal Decomposition Kinetics and Thermal Safety of HNF[J]. Chinese Journal of Energetic Materials, 2014, 22(6):774-779. DOI:10.11943/j. issn.1006-9941.2014.06.012.

复制
历史
  • 收稿日期: 2013-12-31
  • 最后修改日期: 2014-04-02
  • 录用日期: 2014-04-15
  • 在线发布日期: 2014-12-26
  • 出版日期: