文章快速检索     高级检索
  含能材料  2013, Vol. 21 Issue (2): 180-193.  DOI: 10.3969/j.issn.1006-9941.2013.02.006
0

引用本文  

胡荣祖, 马海霞, 严彪, 张海, 韩路, 高红旭, 赵凤起, 姚二岗, 赵宏安. 从不同升温速率下的DSC曲线数据计算/确定含能材料放热分解反应Arrhenius/非Arrhenius动力学参数的方法[J]. 含能材料, 2013, 21(2): 180-193. DOI: 10.3969/j.issn.1006-9941.2013.02.006.
HU Rong-zu, MA Hai-xia, YAN Biao, ZHANG Hai, HAN Lu, GAO Hong-xu, ZHAO Feng-qi, YAO Er-gang, ZHAO Hong-an. A Method of Computing/Determining the Arrhenius/non-Arrhenius Kinetic Parameters of the Exothermic Decomposition Reaction of Energetic Materials from Data of DSC Curves at Different Heating Rate[J]. Chinese Journal of Energetic Materials, 2013, 21(2): 180-193. DOI: 10.3969/j.issn.1006-9941.2013.02.006.

基金项目

国家自然科学基金(No.21173163,No.21073141,No.11171272)

作者简介

胡荣祖(1938-),男,研究员,从事含能材料热化学、热分析研究。e-mail:hurongzu88@163.com

文章历史

收稿日期:2013-01-28
修回日期:2013-03-11
从不同升温速率下的DSC曲线数据计算/确定含能材料放热分解反应Arrhenius/非Arrhenius动力学参数的方法
胡荣祖1,3, 马海霞2, 严彪2, 张海3, 韩路3, 高红旭1, 赵凤起1, 姚二岗1, 赵宏安4     
1. 西安近代化学研究所燃烧与爆炸技术重点实验室,陕西 西安 710065;
2. 西北大学化工学院,陕西 西安 710069;
3. 西北大学数学系/数据分析和计算化学研究所,陕西 西安 710069;
4. 西北大学信息科学与工程学院,陕西 西安 710069
摘要:提出了从不同恒速升温速率(β)条件下的DSC曲线起始温度(T0)、onset温度(Te)、峰温(Tp)、TeTp处的反应转化率αeαp及相应各等转化率αiβiTα,i (i=1, 2, …, L)数据计算/确定含能材料放热分解反应Arrhenius/非Arrhenius动力学参数的方法。用该法得到了四水双(3-(5-硝基-1, 2, 4-三唑))钠[Na2(BNT)(H2O)4]放热分解反应的Arrhenius/非Arrhenius动力学参数。用所得非Arrhenius动力学参数计算了[Na2(BNT)(H2O)4]的热爆炸临界温度(Tb),并与用Arrhenius动力学参数所得的Tb值作了比较。验证了本工作所得[Na2(BNT)(H2O)4]非Arrhenius动力学参数的有效性和可靠性。
关键词物理化学     放热分解反应     非Arrhenius动力学参数     含能材料     恒速加热速率     DSC     热爆炸临界温度    
A Method of Computing/Determining the Arrhenius/non-Arrhenius Kinetic Parameters of the Exothermic Decomposition Reaction of Energetic Materials from Data of DSC Curves at Different Heating Rate
HU Rong-zu 1,3, MA Hai-xia 2, YAN Biao 2, ZHANG Hai 3, HAN Lu 3, GAO Hong-xu 1, ZHAO Feng-qi 1, YAO Er-gang 1, ZHAO Hong-an 4     
1. Science and Technology on Combustion and Explosion Laboratory, Xi′an Modern Chemistry Research Institute, Xi′an 710065, China;
2. College of Chemistry, Northwest University, Xi′an 710069, China;
3. Department of Mathematics/Institute of Data analysis and Computation Chemistry, Northwest University, Xi′an 710069, China;
4. College of Communication Science and Engineering, Northwest University, Xi′an 710069, China
Abstract: A method of computing/determining the Arrhenius/non-Arrhenius kinetic parameters of the exothermic decomposition reaction of energetic materials (EMs) was presented from initial temperature (Te), peak temperature (Tp), conversion degree (αei or pi) at Tei or pi and data (βiTα,i, i=1, 2, …, L) corresponding to isoconversation degree (αi) for DSC curves under different constant heating rate (β) conditions. The Arrhenius/non-Arrhenius kinetic parameters of the exothermic decomposition reaction of sodium cis-bis(3-(5-nitro-1, 2, 4-triazolate tetrahydrate) [Na2(BNT)(H2O)4] were obtained by this method. The critical temperature of thermal explosion (Tb) of [Na2(BNT)(H2O)4] was calculated by the non-Arrhenius kinetic parameters obtained and compared with the value of Tb obtained by Arrhenius kinetic parameters. The validity and reliability of non-Arrhenius kinetic parameters of [Na2(BNT)(H2O)4] obtained in this work were verified.
Key words: physical chemistry    exothermic decomposition reaction    non-Arrhenius kinetic parameters    energetic materials    constant heat rate    DSC    critical temperature of thermal explosion    
1 引言

图 1为含DSC曲线起始温度(T0)的反应速率常数(k)的通式及其派生式。图中,式(1)为描述k-T关系的通式,式(2)~式(10)为式(1)在特定条件下的派生式。式(2)中的A0E分别为Arrhenius动力学参数—表观指前因子和表观活化能。式(3)~式(10)中A0abE为非Arrhenius动力学参数。本工作报道了这些非Arrhenius动力学参数的计算方法,计算了四水双(3-(5-硝基-1, 2, 4-三唑))钠[Na2(BNT)(H2O)4]放热分解反应的Arrhenius/非Arrhenius动力学参数,用所得的非Arrhenius动力学参数计算了热爆炸临界温度(Tb),并与用Arrhenius动力学参数所得的Tb值作比较,借此验证本工作所得非Arrhenius动力学参数的有效性和可靠性。

图 1 含DSC曲线起始温度(T0)的反应速率常数(k)的通式及其派生式 Fig.1 The general expression and its derived formulae with initial temperature (T0) of DSC curve for the reaction rate constant (k)
2 计算非Arrhenius动力学参数的理论和方法

由含初始温度(T0)的非等温动力学方程的微分式[1]

$ \frac{{{\rm{d}}\alpha }}{{{\rm{d}}T}} = \frac{{{A_0}}}{\beta }{T^a}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right] \cdot \left\{ {1 + \left( {T - {T_0}} \right)\left[ {\frac{a}{T} + \left[ {b + \frac{{dE}}{{R{{\left( {T + c} \right)}^2}}}} \right]} \right]} \right\}f\left( \alpha \right) $ (11)

分离变量,并分别在T0T,和0到α间积分,得积分式

$ \begin{array}{l} G\left( \alpha \right) = \int_0^\alpha {\frac{{{\rm{d}}\alpha }}{{f\left( \alpha \right)}}} = \frac{{{A_0}}}{\beta }\int_{{T_0}}^T {{T^a}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right]\left\{ {1 + \left( {T - {T_0}} \right)\left[ {\frac{a}{T} + \left[ {b + \frac{{dE}}{{R{{\left( {T + c} \right)}^2}}}} \right]} \right]} \right\}{\rm{d}}T} \\ \;\;\;\;\;\;\;\;\; = \frac{{{A_0}}}{\beta }\int_{{T_0}}^T {{T^a}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right]\left\{ {1 + a + T\left[ {b + \frac{{dE}}{{R{{\left( {T + c} \right)}^2}}}} \right] - \frac{T}{{{T^0}}}a - {T^0}\left[ {b + \frac{{dE}}{{R{{\left( {T + c} \right)}^2}}}} \right]} \right\}{\rm{d}}T} \\ \;\;\;\;\;\;\;\;\; = \int_{{T_0}}^T {\left\{ {\left( {1 + a} \right)\frac{{{A_0}}}{\beta }{T^a}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right] + T\left[ {b + \frac{{dE}}{{R{{\left( {T + c} \right)}^2}}}} \right]\frac{{{A_0}}}{\beta }{T^a}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right]} \right\}{\rm{d}}T} \\ \;\;\;\;\;\;\;\;\;\;\;\; - T\int_{{T_0}}^T {\left\{ {\frac{{{A_0}}}{\beta }{T^{a - 1}}\exp \left[ {b - \frac{{dE}}{{R\left( {T + c} \right)}}} \right]a + \frac{{{A_0}}}{\beta }{T^a}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right]\left[ {b + \frac{{dE}}{{R{{\left( {T + c} \right)}^2}}}} \right]} \right\}} {\rm{d}}T\\ \;\;\;\;\;\;\;\;\; = \int_{{T_0}}^T {{\rm{d}}\left\{ {\frac{{{A_0}}}{\beta }{T^{a + 1}}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right]} \right\}} - {T_0}\int_{{T_0}}^T {{\rm{d}}\left\{ {\frac{{{A_0}}}{\beta }{T^a}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right]} \right\}} \\ \;\;\;\;\;\;\;\;\; = \frac{{{A_0}}}{\beta }{T^{a + 1}}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right]\left| {_{{T_0}}^T} \right. - {T_0}\frac{{{A_0}}}{\beta }{T^a}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right]\left| {_{{T_0}}^T} \right.\\ \;\;\;\;\;\;\;\;\; = \frac{{{A_0}}}{\beta }{T^{a + 1}}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right] - \frac{{{A_0}}}{\beta }{T^{a + 1}}\exp \left[ {b{T_0} - \frac{{dE}}{{R\left( {{T_0} + c} \right)}}} \right] - {T_0}\frac{{{A_0}}}{\beta }{T^a}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right] +\\\;\;\;\;\;\;\;\; \frac{{{A_0}}}{\beta }{T^{a + 1}}\exp \left[ {b{T_0} - \frac{{dE}}{{R\left( {{T_0} + c} \right)}}} \right]\\ \;\;\;\;\;\;\;\;\; = \frac{{{A_0}}}{\beta }{T^a}\exp \left[ {bT - \frac{{dE}}{{R\left( {T + c} \right)}}} \right] \cdot \left( {T - {T_0}} \right) \end{array} $ (12)

由式(12)两边取对数、重排,定义TTe or pααe or p,得对数形式的积分表达式

$ \ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right) = \ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right] + a\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + b{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - \frac{{dE}}{{R\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c} \right)}} $ (13)

据此,知

(1) a=b=c=0,d=1时的表达式

$ \ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right) = \ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right] - \frac{E}{{R{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}} $ (14)

计算A0E的超定方程组:

$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {{{\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)}^2}} $

代原始数据βiT0iTei or piαei or pii=1, 2, …, L,入超定方程组,得A0E值。

(2) d=1时的表达式

$ \ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right) = \ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right] + a\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + b{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - \frac{E}{{R\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c} \right)}} $ (15)

计算A0abE的超定方程组:

$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]} + a\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} + b\sum\limits_{i = 1}^x {\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} + a\sum\limits_{i = 1}^x {{{\left( {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}^2}} +\\ b\sum\limits_{i = 1}^x {\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} +\\ a\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} + b\sum\limits_{i = 1}^x {{{\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}^2}} -\\ \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)} + \\a\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)} + b\sum\limits_{i = 1}^x {\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {{{\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)}^2}} $

代原始数据c=0.15 K、βiT0iTei or piαei or pii=1, 2, …, L,入超定方程组,得c=0.15 K时的A0abE值。

(3) b=c=0,d=1时的表达式

$ \ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right) = \ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right] + a\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - \frac{E}{{R{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}} $ (16)

计算A0aE的超定方程组:

$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]} + a\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} +\\ a\sum\limits_{i = 1}^x {{{\left( {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}^2}} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} =\\ \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} +\\ a\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} -\\ \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {{{\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)}^2}} $

代原始数据βiT0iTei or piαei or pii=1, 2, …, L,入超定方程组,得A0aE值。

(4) a=c=0,d=1时的表达式

$ \ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right) = \ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right] + b{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - \frac{E}{{R{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}} $ (17)

计算A0bE的超定方程组:

$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]} + b\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} + b\sum\limits_{i = 1}^x {{{\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}^2}} - \left( {\frac{E}{R}} \right)x $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} + bx - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {{{\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)}^2}} $

代原始数据βiT0iTei or piαei or pii=1, 2, …, L,入超定方程组,得A0bE值。

(5) d=0时的表达式

$ \ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right) = \ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right] + a\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + b{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} $ (18)

计算A0ab的超定方程组:

$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]} + a\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} + b\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} + a\sum\limits_{i = 1}^x {{{\left( {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}^2}} + b\sum\limits_{i = 1}^x {\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} + a\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} + b\sum\limits_{i = 1}^x {{{\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}^2}} $

代原始数据βiT0iTei or piαei or pii=1, 2, …, L,入超定方程组,得A0ab值。

(6) c=0,d=1时的表达式

$ \ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right) = \ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right] + a\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + b{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - \frac{E}{{R\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}} $ (19)

计算A0abE的超定方程组:

$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]} + a\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} + b\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} + a\sum\limits_{i = 1}^x {{{\left( {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}^2}} +\\ b\sum\limits_{i = 1}^x {\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} =\\ \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} +\\ a\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} +\\ b\sum\limits_{i = 1}^x {{{\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}^2}} - \left( {\frac{E}{R}} \right)x $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} =\\ \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} + \\a\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)} +\\ bx - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {{{\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}}} \right)}^2}} $

代原始数据βiT0iTei or piαei or pii=1, 2, …, L,入超定方程组,得A0abE值。

(7) a=b=0,d=1时的表达式

$ \ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right) = \ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right] - \frac{E}{{R\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c} \right)}} $ (20)

计算A0E的超定方程组:

$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)} - \left( {\frac{E}{R}} \right)\sum\limits_{i = 1}^x {{{\left( {\frac{1}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} + c}}} \right)}^2}} $

代原始数据c=0.15 K、βiT0iTei or piαei or pii=1, 2, …, L,入超定方程组,得c=0.15 K时的A0E值。

(8) a=c=d=0时的表达式

$ \ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right) = \ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right] + b{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} $ (21)

计算A0E的超定方程组:

$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]} - b\sum\limits_{i = 1}^x {\ln \left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)} - b\sum\limits_{i = 1}^x {\ln {{\left( {{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}^2}} $

代原始数据βiT0iTei or piαei or pii=1, 2, …, L,入超定方程组,得A0E值。

(9) b=c=d=0时的表达式

$ \ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right) = \ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right] + a\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} $ (22)

计算A0a的超定方程组:

$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]} + a\sum\limits_{i = 1}^x {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} $
$ \sum\limits_{i = 1}^x {\ln \left( {\frac{{{\beta _i}}}{{{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} - {T_{0i}}}}} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} = \sum\limits_{i = 1}^x {\ln \left[ {\frac{{{A_0}}}{{G\left( {{\alpha _{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}}} \right]\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} + a\sum\limits_{i = 1}^x {{{\left( {\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}} \right)}^2}} $

代原始数据βiT0iTei or piαei or pii=1, 2, …, L,入超定方程组,得A0a值。

3 不考虑起始温度T0的非等温放热分解反应的动力学行为 3.1 计算用特征/原始数据

计算用Na2(BNT)(H2O)4放热分解反应的DSC曲线、特征数据(βiT0iTeiαeiTpiαpi)和原始数据表:

$ \left. \begin{array}{l} {\beta _1}:{T_{11}},{T_{12}}, \cdots ,{T_{1{k_1}}}\\ \;\;\;\;\;\;{\alpha _{11}},{\alpha _{12}}, \cdots ,{\alpha _{1{k_1}}}\\ {\beta _2}:{T_{21}},{T_{22}}, \cdots ,{T_{2{k_2}}}\\ \;\;\;\;\;\;{\alpha _{21}},{\alpha _{22}}, \cdots ,{\alpha _{2{k_2}}}\\ \;\;\;\;\;\; \cdots \cdots \cdots \cdots \\ {\beta _L}:{T_{L1}},{T_{L2}}, \cdots ,{T_{L{k_L}}}\\ \;\;\;\;\;\;{\alpha _{L1}},{\alpha _{L2}}, \cdots ,{\alpha _{L{k_L}}} \end{array} \right\} $ (23)

图 2表 1表 2所示。其中, T0TeTp分别为初始分解温度、onset温度和峰顶温度,αeαp分别是TeTp时的反应转化率。Tijαij(i=1,2, …,Lj=1,2,…,ki)是互相对应的反应温度和反应转化率,而ki是升温速率βi时的实验中所取的数据点个数。

图 2 不同加热速率下Na2(BNT)(H2O)4放热分解反应的DSC曲线 Fig.2 DSC curves of exothermic decomposition reaction of Na2(BNT)(H2O)4 at different heating rates
表 1 非等温DSC测得Na2(BNT)(H2O)4原始数据和Kissinger法、Ozawa法和方程(27)、(28)所得放热分解反应的动力学参数 Tab.1 The original data of Na2(BNT)(H2O)4 determined by non-isothermal DSC and kinetic parameters of exothermic decomposition reaction obtained by Kissinger′s method, Ozawa′s method and Eqs. (27)[2] and (28)[3]
表 2 不同升温速率(β)下由DSC数据和非线性等转化率法(NL-INT)[6]得到的Na2(BNT)(H2O)4放热分解反应的表观活化能 Tab.2 Data of Na2(BNT)(H2O)4 determined by DSC at different heating rates (β) and apparent activation energies (Ea) of thermal decomposition obtained by an integral isoconversional non-linear (NL-INT) method[6]
3.2 用特征点数据计算动力学参数(EK or OAKae0 or p0be0 or p0)

代表 1中的特征数据:βiT0iTeiTpi(i=1, 2, …, 5),入方程(24),得表 1中的T00Te0Tp0值,入Kissinger方程(25)、Ozawa方程(26)和方程(27)、(28),得表 1中的EK or OAKae0 or p0be0 or p0值。

$ {T_{0\;{\rm{or}}\;{\rm{e}}\;{\rm{or}}\;{\rm{p}}}} = {T_{00\;{\rm{or}}\;{\rm{e0}}\;{\rm{or}}\;{\rm{p0}}}} + b{\beta _i} + c\beta _i^2 + d\beta _i^3\;\;\;\;i = 1,2, \cdots ,L $ (24)
$ \ln \left( {\frac{{{\beta _i}}}{{T_{{\rm{p}}i}^2}}} \right) = \ln \frac{{{A_{\rm{K}}}R}}{{{E_{\rm{K}}}}} - \frac{{{E_{\rm{K}}}}}{R}\frac{1}{{{T_{{\rm{p}}i}}}} $ (25)
$ \lg {\beta _i} = \lg \left[ {\frac{{{A_{\rm{K}}}{E_{{\rm{Oe}}\;{\rm{or}}\;{\rm{Op}}}}}}{{RG\left( \alpha \right)}}} \right] - 2.315 - 0.4567\frac{{{E_{{\rm{Oe}}\;{\rm{or}}\;{\rm{Op}}}}}}{{R{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}}}} $ (26)
$ \lg {\beta _i} = \ln \left[ {\frac{{{A_0}}}{{{b_{{\rm{e0}}\;{\rm{or}}\;{\rm{p0}}}}G\left( \alpha \right)}}} \right] + {b_{{\rm{e0}}\;{\rm{or}}\;{\rm{p0}}}}{T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} $ (27)
$ \lg {\beta _i} = \ln \left[ {\frac{{{A_0}}}{{\left( {{a_{{\rm{e0}}\;{\rm{or}}\;{\rm{p0}}}} + 1} \right)G\left( \alpha \right)}}} \right] + \left( {{a_{{\rm{e0}}\;{\rm{or}}\;{\rm{p0}}}} + 1} \right)\ln {T_{{\rm{e}}i\;{\rm{or}}\;{\rm{p}}i}} $ (28)
3.3 用非线性等转化率积分法[6]估算动力学参数ENL-INT-SY3

代表 2中同一α处的原始数据βiTα,i(i=1, 2, …, 5),入方程(29)和(30),得表 2中满足该方程最小(Min)值的ENL-INT-SY3值。用ENL-INT-SY3, iαi(i=1, 2, …, 40)数据构筑ENL-INT-SY3-α关系曲线,结果如图 3所示。该曲线表明,α在0.100~0.975范围内,ENL-INT-SY3=(189.34±0.51) kJ·mol-1Eα变化甚微,意味Na2(cis-BNT)(H2O)4放热分解过程可用某一机理函数描述。

$ {\Omega _{1{\bf{I}}}}\left( {{E_\alpha }} \right) = \min \left| {\sum\limits_{i = 1}^n {\sum\limits_{j \ne i}^n {\frac{{{\beta _{\rm{j}}} \cdot I\left( {{E_\alpha },{T_{\alpha ,i}}} \right)}}{{{\beta _{\rm{j}}} \cdot I\left( {{E_\alpha },{T_{\alpha ,j}}} \right)}}} } - n\left( {n - 1} \right)} \right| $ (29)
图 3 由非线性等转化率法(NL-INT)得到的Na2(BNT)(H2O)4放热分解反应的Eα-α曲线 Fig.3 Eα-α curve for the exothermic decomposition reaction of Na2(BNT)(H2O)4 by an integral isoconversional non-linear (NL-INT) method

式中,I (Eα, Tα)积分取Senum-Yang三级近似式(30)计算:

$ {{I}_{\text{SY3}}}\left( E,T \right)=\left[ T{{\text{e}}^{-u}}\left( \frac{{{u}^{2}}+10u+18}{{{u}^{3}}+12{{u}^{2}}+36u+24} \right) \right] $ (30)

式中,u=E/RT

3.4 用“y(α)-α”标准曲线推断最可几f(α)[7]

将人为数据:αi, y(αi), i=1, 2, …, jα=0.5,y(0.5)代入关系式$y(\alpha) = \frac{{f\left(\alpha \right) \cdot G(\alpha)}}{{f\left({0.5} \right) \cdot G(0.5)}}$作如图 4所示的“y(α)-α”关系曲线,视该曲线为标准曲线。

图 4 y(α)-α关系 Fig.4 y(α) vs. α relation

表 2中原始数据:αi, Ti, $\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}} = \frac{\beta }{{60}} \cdot \frac{{{\rm{d}}\alpha }}{{{\rm{d}}T}}} \right)$, i=1, 2, …jα=0.5,T0.5${\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}}} \right)_{0.5}}$代入关系式$y(\alpha) = {\left({\frac{T}{{{T_{0.5}}}}} \right)^2}\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}}} \right){\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}}} \right)_{0.5}}$作“y(α)-α”关系曲线,视该曲线为实验曲线。

α=0.100~0.975范围内的实验数据点全部落在图 4所示两条红线间,表明,可能的机理函数有7个,分别为:第1、22、23、24、25、26和27号函数,它们有逻辑形式通式:G(α)=αn[n=2(1D)、1/4、1/3、1/2、1、3/2、2],因此,要明确指出哪个函数就是所求的f(α)是相当困难的。

3.5 用“w(α)-α”标准曲线推断最可几f(α)[7]

将人为数据:αi, w(αi), i=1, 2, …, jα=0.5,w(0.5)代入关系式$w\left( \alpha \right) = \frac{{f\left( {0.5} \right) \cdot f'\left( \alpha \right)}}{{f'\left( {0.5} \right) \cdot f\left( \alpha \right)}}$作如图 5所示的"w(α)-α"关系曲线,视该曲线为标准曲线。

图 5 w(α)-α关系 Fig.5 w(α) vs. α relation

表 2中原始数据:αi, Ti, ${\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}T}}} \right)_i}$, i=1, 2, …jα=0.5,T0.5${\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}T}}} \right)_{0.5}}$代入关系式$w(\alpha) = \frac{{\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}T}}} \right)}}{{{{\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}T}}} \right)}_{0.5}}}}{\left({\frac{{{T_{0.5}}}}{T}} \right)^2}$作"w(α)-α"关系曲线,视该曲线为实验曲线。

α=0.100~0.975范围内的实验数据点全部落在图 5所示两条红线间,表明,可能的机理函数有5个,分别为:第1、22、23、24和27号函数,它们有逻辑形式通式:G(α)=αn[n=2(1D)、1/4、1/3、1/2、2],因此,要明确指出哪个函数就是所求的f(α)也是相当困难的。

3.6 用“Z(α)-α”标准曲线推断最可几f(α)[7]

将人为数据:αi, Z(αi),i=1, 2, …, j代入关系式Z(α)=f(α)G(α)作图 6所示的“Z(α)-α”关系曲线,视该曲线为标准曲线。

图 6 Z(α)-α关系 Fig.6 Z(α) vs. α relation

表 2中原始数据:β, αi, Ti, ${\left( {\frac{{{\rm{d}}\alpha }}{{{\rm{d}}{t}}} = \frac{\beta }{{60}} \cdot \frac{{{\rm{d}}\alpha }}{{{\rm{d}}{T}}}} \right)_i}$, i=1, 2, …j和Ozawa法所得的E值,代入关系式

$ Z\left( \alpha \right) = \frac{{{\rm{ \mathit{ π} }}\left( u \right)\left( {\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}}} \right)T}}{\beta } $

式中, ${\rm{ \mathit{ π} }}(u) = \frac{{{u^2} + 10u + 18}}{{{{\rm{u}}^3} + 12{{\rm{u}}^2} + 36u + 24}}, u = E/RT$。作“Z(α)-α”关系曲线,视该曲线为实验曲线。

α=0.100~0.975范围内的实验数据点全部落在图 6所示两条红线附近,推断第22、23、24号函数可能为最可几机理函数,至此,我们仍不能明确哪个函数是最概然的,此处仅提供了很可能是第22号、23号和24号函数中的一个这一信息。

3.7 用逻辑选择法推断最可几机理函数f(α)[8]

为推断反应的最可几机理函数f(α),进行了代α=0.100~0.975范围内的数据:βiTiαi(i=1, 2, …, 36)和文献[8]中41个积分形式机理函数,入Šatava-Šesták方程(方程式(31))

$ \log G\left( \alpha \right) = \log \frac{{{A_{\rm{s}}}{E_{\rm{s}}}}}{{R\beta }} - 2.315 - 0.4567\frac{{{E_{\rm{s}}}}}{{RT}} $ (31)

EA的计算,结果如表 3~表 5所示。

表 3 用Šatava-Šesták法分析表 1中5, 10 K·min-1时Na2(BNT)(H2O)4热分解数据的结果 Tab.3 Analysis results of the thermal decomposition data at 5, 10 K·min-1of Na2(BNT)(H2O)4 in Table 1 by Šatava-Šesták method
表 4 用Šatava-Šesták法分析表 1中15, 20 K·min-1时Na2(BNT)(H2O)4热分解数据的结果 Tab.4 Analysis results of the thermal decomposition data at 15, 20 K·min-1 of Na2(BNT)(H2O)4 in Table 1 by Šatava-Šesták method
表 5 用Šatava-Šesták法分析表 1中25 K·min-1时Na2(BNT)(H2O)4热分解数据的结果 Tab.5 Analysis results of the thermal decomposition data at 20 K·min-1 of Na2(BNT)(H2O)4 in Table 1 by Šatava-Šesták method

据此,发现41个机理函数中有40个机理函数计算的E值均在含能材料正常范围外,即使E值在正常范围内, 如表 5的23号函数, E=246.40 kJ·mol-1, 也远离ENL-INT-SY3=189.34 kJ·mol-1,属不合理,被排除。只有第22号函数计算的EA值在含能材料的EA的正常范围(80~250 kJ·mol-1和107~1030 s-1)内,逻辑选择法所得的E =200.31 kJ·mol-1 (表 6)也接近ENL-INT-SY3=189.34 kJ·mol-1,因此,逻辑上较合理的最可几机理函数是第22号函数:G(α)=α1/4f(α)=4α3/4

表 6 用逻辑选择法分析表 3~表 5中Na2(BNT)(H2O)4热分解动力学数据的结果 Tab.6 Analysis results of the thermal decomposition kinetic data of Na2(BNT)(H2O)4 in Tables 3-5 by logical choice method

据此,知在α从0.100~0.975的范围内,Na2(BNT)(H2O)4放热分解反应的速率方程为:$\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}}} \right) = {10^{13.73}}{\alpha ^{3/4}}{{\rm{e}}^{{\rm{ -24093/}}\mathit{T}}}$

3.8 ΔG、ΔH和ΔS值的估算

由热力学关系式(32)、(33)和(34)算得T=Tp0=656.79 K,E=Ea=191.31 kJ·mol-1A=Aa=1012.46时,Na2(BNT)(H2O)4放热分解反应的活化热力学学参数为:活化自由能ΔG=199.81 kJ·mol-1,活化焓ΔH=185.85 kJ·mol-1,活化熵ΔS=-21.26 J·(K·mol)-1

$ \Delta {G^ \ne } = E - RT\ln \left( {\frac{{Ah}}{{{k_{\rm{B}}}T}}} \right) $ (32)
$ \Delta {H^ \ne } = E - R{T_{{\rm{p0}}}} $ (33)
$ \Delta {S^ \ne } = \frac{{\Delta {H^ \ne } - \Delta {G^ \ne }}}{{{T_{{\rm{p0}}}}}} $ (34)

式中,kB为Boltzman常数,1.3807×10-23 J·K-1h为plank常数,6.626×10-34 J·s-1

负ΔS值,正ΔH和ΔG值, 表明Na2(BNT)(H2O)4有较好的对热抵抗能力。

3.9 动力学补偿效应

lnAE呈线性关系的现象,谓之动力学补偿效应。其数学表达式为:

$ \ln A = aE + b $ (35)

式中, ab为补偿参数,a的单位为mol·kJ-1

表 6EA值,入方程(35),得Na2(BNT)(H2O)4放热分解反应的动力学补偿效应方程

$ \ln A = 0.1790E - 5.5953 $ (36)

该方程表明,AE变化效应得到部分补偿。通过方程(36),可从已知ENL-INT-SY3=189.34 kJ·mol-1,预测A=1012.92 s-1,从而知,Na2(BNT)(H2O)4放热分解反应速率方程:$\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}}} \right) = {10^{13.52}}{\alpha ^{3/4}}{{\rm{e}}^{{\rm{ -22774/}}\mathit{T}}}$

3.10 CnB反应动力学参数的估算

代表 2中α=0.100到αP的数据:β, αi, Ti${\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}} = \frac{\beta }{{60}} \cdot \frac{{{\rm{d}}\alpha }}{{{\rm{d}}T}}} \right)_i}$, i=1, 2, …j, 入自催化n级反应(CnB)速率方程:

$ \frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}} = A{{\rm{e}}^{ - E/RT}}{\left( {1 - \alpha } \right)^n}\left( {1 + {K_{{\rm{cat}}}}\alpha } \right) $ (37)

表 7中的动力学参数。

表 7 Na2(BNT)(H2O)4自催化n级反应(CnB)的动力学参数 Tab.7 The kinetic parameters of the n-order autocatalytic reaction (CnB) for the thermal decomposition of Na2(BNT)(H2O)4

据此,知Na2(BNT)(H2O)4的CnB速率方程为:$\left({\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}}} \right) = {10^{10.45}}{{\rm{e}}^{{\rm{ -20433/}}\mathit{T}}}{\left({1 -\alpha } \right)^{0.34}}\left({1 + 11.4\alpha } \right)$

4 考虑起始温度(T0)的Na2(BNT)(H2O)4的非等温放热分解反应的动力学行为

代表 1中的特征数据(βiT0iTei or piαei or pii=1, 2, …, 5),入方程(14)~(22),得表 8中相应方程的非Arrhenius动力学参数:lg(A0/s-1)、abE值,代这些abE值,入图 7中方程(39)~(47)[9],得表 9中的热爆炸临界温度值。用方程(39)得到的TbeTbp值与方程(40)~(47)所得的TbeTbp值相吻合,佐证本工作提出的“从不同升温速率下的DSC曲线数据计算/确定含能材料放热分解反应Arrhenius/非Arrhenius动力学参数的方法”有效、可靠。

表 8 用超定系统法得到的Na2(BNT)(H2O)4放热分解反应的非Arrhenius动力学参数1) Tab.8 The non-Arrhenius kinetic parameters of the exothermic decomposition reaction of Na2(BNT)(H2O)4 obtained by an overdetermined system method1)
图 7 含反应初始温度(T0)计算Tb的通式及其派生式 Fig.7 The general experssion and its derived formulae with initial reaction temperature(T0) for estimating the critical temperature Tb of tnermal expiosion
表 9表 8表 1中数据得到的Na2(BNT)(H2O)4的热爆炸临界温度 Tab.9 The critical temperature of thermal explosion of Na2(BNT)(H2O)4 obtained by data in Tables 8 and Tables 1

为考察T0Tb值的影响,进行了代表 1中的EOe or OpTe0 or p0be0 or p0ae0 or p0值, 入方程(48)~(50)计算Tbe or bp值的计算,结果如表 6所示。由此可见,计算中,不考虑T0Tbe or bp值要比考虑T0Tbe or bp值高10 K左右。

$ {T_{{\rm{be}}0\;{\rm{or}}\;{\rm{bp0}}}} = \frac{{{E_{{\rm{Oe}}\;{\rm{or}}\;{\rm{Op}}}} - \sqrt {E_{{\rm{Oe}}\;{\rm{or}}\;{\rm{Op}}}^2 - 4{E_{{\rm{Oe}}\;{\rm{or}}\;{\rm{Op}}}}R{T_{{\rm{e0}}\;{\rm{or}}\;{\rm{p0}}}}} }}{{2R}} $ (48)
$ {T_{{\rm{be}}0\;{\rm{or}}\;{\rm{bp0}}}} = {T_{{\rm{e0}}\;{\rm{or}}\;{\rm{p0}}}} + \frac{1}{{{b_{{\rm{e0}}\;{\rm{or}}\;{\rm{p0}}}}}} $ (49)
$ {T_{{\rm{be}}0\;{\rm{or}}\;{\rm{bp0}}}} = \frac{{{a_{{\rm{e0}}\;{\rm{or}}\;{\rm{p0}}}}}}{{{a_{{\rm{e0}}\;{\rm{or}}\;{\rm{p0}}}} - 1}}{T_{{\rm{e0}}\;{\rm{or}}\;{\rm{p0}}}} $ (50)
5 结论

(1) 提出了从不同升温速率下的DSC曲线数据计算/确定含能材料放热分解反应Arrhenius/非Arrhenius动力学参数的方法。

(2) 在α从0.100到0.975的范围内,Na2(BNT)(H2O)4放热分解反应的速率遵循方程:$\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}} = {10^{13.73}}{\alpha ^{3/4}}{{\rm{e}}^{ -24093/T}}$

(3) 在α从0.100到αp的范围内,Na2(BNT)(H2O)4的CnB速率方程为:$\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}} = {10^{10.45}}{{\rm{e}}^{ -20433/RT}}{\left({1 -\alpha } \right)^{0.34}}\left({1 + 11.4\alpha } \right)$

(4)ΔG=199.81 kJ·mol-1,ΔH=185.85 kJ·mol-1,ΔS=-21.26 J·(K·mol)-1Tbe>660 K的事实,表明Na2(BNT)(H2O)4有较好的对热抵抗能力。

(5) 对于Na2(BNT)(H2O)4,不考虑T0Tbe or bp值要比考虑T0Tbe or bp值高10 K左右。

参考文献
[1]
胡荣祖, 赵凤起, 高红旭, 等. 量热学基础与应用[M]. 北京: 科学出版社, 2011.
HU Rong-zu, ZHAO Feng-qi, GAO Hong-xu, et al. Fundamentals and application of calorimetry[M]. Beijing: Science Press, 2011
[2]
XUE Liang, ZHAO Feng-qi, HU Rong-zu, et al. A simple method to estimate the critical temperature of thermal explosion for energetic materials using non-isothermal DSC[J]. Journal of Energetic Materials, 2010, 28: 17-34. DOI:10.1080/07370650903124518
[3]
ZHAO Feng-qi, HU Rong-zu, GAO Hong-xu. A simple method based on Harcourt-Esson′s equation to estimate the critical temperature of thermal explosion for energetic materials using non-isothermal DSC[J]. Chin J Chem, 2009, 27: 1067-1072. DOI:10.1002/cjoc.v27:6
[4]
Kissinger H E. Reaction kinetics on differential thermal analysis[J]. Anal Chem, 1957, 29(11): 1702-1706. DOI:10.1021/ac60131a045
[5]
Ozawa T. A new method of analyzing thermogravimetric data[J]. Bull Chem Soc Jpn, 1965, 38(1): 1881-1886.
[6]
胡荣祖, 赵凤起, 高红旭, 等. 非线性等转化率的微、积分法及其在含能材料物理化学研究中的应用(I)—理论和数值方法[J]. 含能材料, 2007, 15(2): 97-100.
HU Rong-zu, ZHAO Feng-qi, GAO Hong-xu, et al. Differential and integral isoconversional non-linear methods and their application in physical chemistry study of energetic materials-I. Theory and method[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2007, 15(2): 97-100.
[7]
胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2001.
HU Rong-zu, Shi Qi-zheng. Thermal analysis kinetics[M]. Beijing: Science Press, 2001
[8]
胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学[M]. 北京: 科学出版社, 2008.
HU Rong-zu, GAO Sheng-li, Zhao Feng-qi, et al. Thermal analysis kinetics[M]. Beijing: Science Press, 2008
[9]
胡荣祖, 赵凤起, 高红旭, 等. 通用热分析动力学微、积分式的导出途径和非等温条件下小药量含能材料热爆炸临界温度的估算方法[C] //2010南京国际热分析动力学论坛文集, 南京: 南京理工大学出版社, 2010, 83-161.
HU Rong-zu, ZHAO Feng-qi, GAO Hong-xu. et. al. Derivation process of differential and integral forms for general thermal analysis kinetic equations and estimation methods of critical temperature of thermal explosion for small-scale energetic materials under non-isothermal DSC condition[C]//Thesis compilation on 2010 Nanjing international thermal analysis kinetics forum. Nanjing: Nanjing university of science & technology press, 2010, 83-161.
[10]
HU Rong-zu, GAO Hong-xu, ZHAO Feng-qi, et al. Theory and numerical method of calculating the kinetic parameters of exothermic decomposition reaction of energetic materials from peak temperature of DSC cures at constant heating rates[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2009, 17(6): 643-648.
图文摘要

A method of computing/determining the Arrhenius/non-Arrhenius kinetic parameters of the exothermic decomposition reaction of energetic materials (EMs) was presented from initial temperature (Te), peak temperature (Tp), conversion degree (αei or pi) at Tei or pi and data (βi, Tα,i, i=1, 2, …, L) corresponding to isoconversation degree (αi) for DSC curves under different constant heating rate (β) conditions.