文章快速检索     高级检索
  含能材料  2017, Vol. 25 Issue (8): 661-666.  DOI: 10.11943/j.issn.1006-9941.2017.08.008
0

引用本文  

温茂萍, 唐维, 董平, 唐明峰, 付涛, 詹春红. 粘结剂含量对热压TATB基PBX残余应力的影响[J]. 含能材料, 2017, 25(8): 661-666. DOI: 10.11943/j.issn.1006-9941.2017.08.008.
WEN Mao-ping, TANG Wei, DONG Ping, TANG Ming-feng, FU Tao, ZHAN Chun-hong. Effect of Binder Content on Residual Stress of Thermally Compacted TATB Based PBX[J]. Chinese Journal of Energetic Materials, 2017, 25(8): 661-666. DOI: 10.11943/j.issn.1006-9941.2017.08.008.

基金项目

国家自然科学基金(11372292, 11604309), 国家自然科学基金-中国工程物理研究院联合基金(NSAF 11076002) 资助

作者简介

温茂萍(1967-), 硕士, 研究员, 主要从事非金属材料力学与物理性能研究。e-mail: wenmp@caep.cn

文章历史

收稿日期:2016-09-10
修回日期:2017-02-27
粘结剂含量对热压TATB基PBX残余应力的影响
温茂萍1, 唐维1, 董平2, 唐明峰1, 付涛1, 詹春红1     
1. 中国工程物理研究院化工材料研究所, 四川 绵阳 621999;
2. 中国工程物理研究院表面物理与化学国家重点实验室, 四川 绵阳 621907
摘要:为了掌握粘结剂含量对高聚物粘结炸药(PBX)残余应力和宏观力学性能的影响规律, 采用基于VKα靶的X射线衍射方法测试了F2314粘结剂含量为0~11%热压成型的TATB基PBX残余应力, 采用巴西试验方法测试其宏观力学性能, 并采用了TATB晶体-粘结剂包裹结构简化模型进行温度单一因素条件的残余应力数值模拟验证。实验结果表明:不含粘结剂的PBX, 其残余应力为拉应力; 随着PBX中粘结剂含量增加, 残余应力逐渐减小, 当粘结剂含量超过5%, 其拉伸残余应力递减趋势增强; 当粘结剂含量由7%增加到9%时, 残余应力由拉应力转变为压应力; PBX力学强度随粘结剂含量增加而增强。残余应力模拟结果与实验结果具有相同变化趋势。
关键词高聚物粘结炸药(PBX)     残余应力     X射线衍射     1, 3, 5-三氨基-2, 4, 6-三硝基苯(TATB)    
Effect of Binder Content on Residual Stress of Thermally Compacted TATB Based PBX
WEN Mao-ping1, TANG Wei1, DONG Ping2, TANG Ming-feng1, FU Tao1, ZHAN Chun-hong1     
1. Institute of Chemical Material, CAEP, Mianyang 621999, China;
2. State Key Laboratory for Surface Physics AND Chemistry, Mianyang 621907, China
Abstract: In order to understanding the influence of binder content on residual stress and mechanical performance of polymer bonded explosive(PBX), the residual stress of warm compacted 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) based PBX, with binder content ranging from 0 to 11%, were measured by VKα based X-ray diffraction method and mechanical properties were measured by Brazilian test. A simplified model of TATB crystal packed with binder structure was introduced for verifying the experiment results only in one condition of temperature. Results show that: the residual stress in PBX without any binder exhibits tensile mode is tension stress, with the binder content increasing, the residual stress reduces gradually. While the content of the binder is added more than 5%, the tensile residual stress reduces seriously. While the content is added from 7% to 9%, the residual stress turns to performing as compressive mode, the mechanical strength increases gradually with the more binder. The calculated residual stress of PBX agrees well with the experimental results. The experiment results can provide a reference for the formula design of reducing residual stress in TATB based PBX.
Key words: polymer bonded explosive(PBX)    residual stress    X-ray diffraction method    1, 3, 5-triamino-2, 4, 6-trinitrobenzene(TATB)    
1 引言

高聚物粘结炸药(PBX)一般由炸药晶体、粘结剂、钝感剂等材料经造粒后再通过热压技术压制而成, 其中炸药晶体含量大于90%、粘结剂含量小于8%[1-2]。这种热压PBX在成型过程中将受到温度和压力的作用, 成型后不可避免产生残余应力, 残余应力对材料力学性能及其破坏行为等均有显著影响, 如何改善其力学性能是PBX配方设计中必须解决的问题。由于一直没有可靠方法来测试PBX残余应力, 在PBX残余应力形成机制及其对力学性能影响等方面的研究基础十分薄弱, 因此, 在PBX配方设计中, 如何能既满足能量要求又具备优良力学性能, 主要是依据工艺试验来确定, 而缺乏PBX残余应力方面的实验与理论研究作为支撑。

金属和其他材料领域已有一些的残余应力测试方法[3-7], 近十多年来, 逐渐有学者将这些方法应用于PBX[8]。王守道[9]探索了X射线衍射方法测试PBX残余应力, 如雍志华[10]采用基于Cu靶X射线衍射方法测试了1, 3, 5-三氨基-2, 4, 6-三硝基苯(TATB)基PBX的残余应力, 但他们是根据TATB晶体(062)晶面的72.5°小角度衍射峰进行测试的。衍射峰的衍射角角度越高对应力变化越敏感, 其测试精度越高, 因此, 残余应力测试通常要求衍射角大于130°[7]。周红萍等[11]采用了盲孔法测试了PBX残余应力, 获得了其残余应力随热处理时间等条件的变化规律, 盲孔法测试精度相对较高, 但是一种破坏性方法, 对于某些敏感炸药存在安全风险。张伟斌等[12]探索了超声方法测试PBX炸药试件内应力, 但在测试原理及计算方法上均有待改进。

本研究采用了基于VKα靶的X射线衍射方法, 使TATB晶体(062)晶面的衍射角大于130°, 在此基础上, 测试了不同粘结剂含量的TATB基PBX残余应力, 获得TATB基PBX残余应力随粘结剂含量的变化规律, 结合数值模拟分析认识其变化机制, 以期从残余应力角度为PBX力学性能改性的配方设计提供研究基础。

2 试验制备及测试分析方法 2.1 试样制备

制备不同F2314/TATB配比的造型粉, 在相同温度和压力条件下由模具压制成型, 成型后试样不进行机械加工和热处理, 在室温环境条件下存放7天后, 进行残余应力和力学性能测试。F2314含量为0、1%、3%、5%、7%、9%、11%;每种配比的试样数量: 5发; 试样尺寸: Φ20 mm×6 mm; 热压成型条件:药温120 ℃、模温120 ℃、压力60 kN、保压时间5 min。

2.2 基于VKα靶X射线衍射的TATB基PBX残余应力测试

采用VKα靶使TATB(062)晶面的衍射峰的衍射角大于130°, 满足X射线衍射测试残余应力时对衍射角的要求。在此基础上测试不同粘结剂含量的TATB基PBX的残余应力。X射线残余应力的测试条件为: X3000应力仪、VKα靶、TATB(062)晶面、衍射角2θ=147.8°、准直器直径φ3 mm、多曝光模式、靶电压25 kV、电流4 mA。

2.3 基于圆弧压头巴西试验的TATB基PBX力学性能测试

PBX拉伸强度显著小于压缩强度, PBX力学性能改性中最为关注的是其拉伸性能[1-2]。标准PBX拉伸试样为哑铃状, 需进行机械加工, 机械加工会改变试样残余应力。巴西试验属于一种间接拉伸试验方法, 所需试样为圆柱型试样, 可直接压制成型而不需机械加工, 其测试结果可更准确地反映残余应力对力学性能影响。目前PBX巴西试验测试结果与标准拉伸试验结果[13-16]已有较好的相关性, 可以作为不同条件试样之间的平行比较。本研究采用文献[18]的圆弧压头巴西试验方法, 测试了不同粘结剂F2314含量TATB基PBX拉伸性能, 加载速度为0.5 mm·min-1

2.4 不同粘结剂含量TATB基PBX的内部结构及断裂形貌观测

采用电子计算机断层扫描(CT)和扫描电子显微镜(SEM)对F2314含量为0%、5%、11%的三种TATB基PBX试样的内部结构和巴西试验后的断裂形貌进行了观测。

2.5 基于简化模型的TATB基PBX残余应力数值模拟分析

由于PBX热压行为在细观上十分复杂, 要实现热压成型后PBX残余应力精确模拟还存在困难, 故本研究采用了单个TATB晶体与不同比例F2314粘结剂组成的简化模型, 模拟了从120 ℃降温至室温(20 ℃)时TATB晶体上的残余应力形成及分布情况, 获得残余应力随粘结剂含量的变化趋势。

3 结果及讨论 3.1 基于VKα靶的TATB基PBX残余应力测试结果

雍志华等[10]基于CuKα靶测试的TATB晶体X射线衍射图谱中, 衍射峰主要集中在2θ<60°范围内, 在2θ>60°范围, 当2θ=72.5°有一个较为明显的衍射峰, 经标定该峰对应(062)晶面。他们根据该峰测试了TATB基PBX的残余应力, 同时也指出该峰衍射角偏小, 提出采用其它靶材将该晶面衍射峰角提高。本研究测试了不同靶材X射线作用下TATB(062)晶面衍射角, 见表 1。从表 1可见, 采用VKα靶测试TATB(062)晶面的衍射角为147.8°, 因此, 基于VKα靶测试TATB基PBX残余应力更为合理。

表 1 不同靶材X射线作用下TATB的(062)晶面的衍射角 Tab.1 The X-ray diffraction angle of TATB′s (062) plane based on different target materials

基于VKα靶X射线衍射方法, 对5发F2314粘结剂含量为5%的TATB基PBX试样残余应力进行了测试, 结果见表 2。从表 2可以看出, 模压TATB基PBX药柱的残余应力值相对于金属材料而言是很小的, 并且其分散性较大, 从测试数据上看, 本研究测试的平均值小于文献[10]的测试结果(3.49±1.42) MPa, 这与试样尺寸和试样状态有关, 表 2为本研究试样在室温环境条件下存放了7天后的测试结果。

表 2 基于VKα靶测试的TATB基PBX残余应力 Tab.2 The TATB based PBX′s residual stress by using the VKα target test
3.2 不同粘结剂含量TATB基PBX的残余应力

测试了F2314含量分别为0,1%,3%,5%,7%,9%,11%等7组TATB基PBX试样的残余应力, 测试结果为5发试样的平均值, 见表 3。从表 3可以看出:不含粘结剂纯TATB晶体粉末压制而成的试样, 其残余应力为正值, 表明纯TATB药柱的残余应力为拉应力形式[7], 添加F2314粘结剂后, TATB基PBX的拉应力形式的残余应力逐渐减小, 随着粘结剂含量的增加, 残余应力值逐渐从正值转变为负值, 即残余应力由拉应力向压应力转变, 当粘结剂含量为11%时, TATB基PBX中的残余应力已是显著的压应力形式。

表 3 不同粘结剂含量TATB基PBX的残余应力 Tab.3 The residual stress of the TATB based PBX with different binder contents
3.3 不同粘结剂含量TATB基PBX的力学性能、内部结构及其断裂形貌

图 1是所测试的应力-应变曲线(σ-ε)。测试结果表明:纯TATB压制的药柱的断裂特性呈现显著脆性断裂特征, 破坏强度、破坏应变均较小; 随着粘结剂含量增加, 药柱的韧性逐渐增强, 其破坏强度、破坏应变变都显著增加。通常认为, 残余应力会影响材料的力学性能, 拉伸残余应力对材料力学性能不利, 起到降低材料力学性能的作用, 而压缩残余应力对材料力学性能有利, 具有增强效应[7]。虽然PBX细观结构比较复杂, 其力学性能不仅仅受到残余应力的影响, 还受到晶体、粘结剂、晶体与粘结剂的界面作用等多方面作用, 不过, 本研究测试粘接剂含量增加与残余应力从拉应力逐渐向压应力形式转变规律是相互吻合的, 如图 2所示。

图 1 不同粘结剂含量TATB基PBX的应力-应变曲线 Fig.1 The stress-strain curves of the TATB based PBX with different binder contents
图 2 TATB基PBX的破坏强度与其残余应力变化趋势比较 Fig.2 The tensile breaking stress and residual stress changing with the binder content of the TATB based PBX

图 3是为F2314粘结剂含量0,5%,11%三种的TATB基PBX试样内部结构的CT图像。从图 3可以看出, 纯TATB压制PBX药柱是灰度均匀分布CT图像, 而随着粘结剂增加, 图像灰度分布变得不均匀, 由于F2314粘结剂密度比TATB晶体略高, 因此, 较亮区域是F2314粘结剂, 较暗区域是TATB晶体聚集体, F2314粘结剂包覆在TATB晶体聚集体外。采用SEM对三种F2314粘结剂含量为0,5%,11%的TATB基PBX试样巴西试验的断裂形貌进行观测, 如图 4所示。由图 4可以看出, 纯TATB药柱的断貌是裸露TATB晶体, 添加粘结剂后, 在TATB晶体之间存在被拉伸成片状的F2134粘结剂。

图 3 不同粘结剂含量TATB基PBX内部结构的CT图像 Fig.3 The CT photographs of the TATB based PBX with different binder contents
图 4 不同粘结剂含量TATB基PBX巴西试验断貌的SEM图像 Fig.4 The SEM photographs of the TATB based PBX with different binder contents
3.4 粘结剂含量对TATB基PBX残余应力的影响机制

PBX属于颗粒填充复合材料, 各组份材料热物理性能与力学性能差别迥异, 在热压成型的压制过程中, 受到温度-压力共同作用, 会发生晶体颗粒破碎重排与粘结剂流动填隙等; 在压制成型后进行降温时, 又存在粘结剂固化与体系弹性回复等问题, 因此, 要实现热压成型后PBX残余应力精确模拟还存在巨大难度。本研究采用单个TATB晶体与不同比例F2314粘结剂组成的简化模型, 模拟了该体系从120 ℃降温至20 ℃时, TATB晶体上残余应力的形成演化分布情况, 获得了残余应力随粘结剂含量的变化趋势, 分析了粘结剂含量对PBX残余应力的影响机制。

本研究采用的简化模型中, TATB晶体尺寸按晶胞参数(a=0.901nm,b=0.903 nm,c=0.681 nm,α=108.59°,β=91.82°,γ=119.97°)等比例放大到毫米级(即a=0.901 mm,b=0.903 mm,c=0.681 mm), 粘结剂含量通过均布于TATB晶体的涂覆层厚度调节。相关材料参数的取值如下: TATB晶体的模量取8.86 GPa, 泊松比0.3, 密度1.938 g·cm-3, 质量热容1.17 kJ·(kg-1·K-1), 导热系数0.544 W·m-1·K-1, 根据文献[17]的数据计算了TATB晶体abc晶轴上的热膨胀系数分别为1.04×10-5, 9.80×10-6, 1.69×10-4 m·K-1, 以晶体a轴为X轴, ab面为XY平面构建有限元计算的笛卡尔坐标系, 转换TATB的热膨胀系数到该笛卡尔坐标系后, XYZ向的热膨胀系数分别为2.07×10-5, 7.38×10-5, 1.56E×10-4 m·K-1; 根据文献[17]数据计算了F2314粘结剂的热膨胀系数和模量随温度的变化, 如图 5所示。由图 5可知, F2314泊松比为0.3, 密度为2.03 g·cm-3, 质量热容为0.47 kJ·kg-1·K-1, 导热系数为0.15 W·m-1·K-1, 表面传热系数为10 W·m-2·K-1

图 5 F2314不同温度下的热膨胀系数和模量值 Fig.5 The thermal expansion coefficient and modul of the F2314 under different temperature

图 6是基于上述简化模型和材料参数获得的, 在从120 ℃降温至20 ℃室温时, 未包覆粘结剂的TATB晶体的残余应力分布情况。纯TATB晶体表面主要呈现出拉应力状态(图 6a), 最大约2.39 MPa, 晶体内部则主要体现为压应力状态(图 6b), 最大压应力约-0.448 MPa。

图 6 纯TATB晶体的第一主应力分布图 Fig.6 The 1st principal stress distributing in the TATB crystal with no binder

图 7是5%粘结剂包覆TATB晶体时的残余应力分布情况计算结果, TATB晶体表面的残余应力分布情况(图 7a), 图 7b是含粘结剂包覆时的截面应力分布图(图 7b)。可以看出, 有粘结剂包覆时, 残余应力的分布情况有所改变, 残余应力从基本均布的状况向垂直晶体最大热膨胀系数方面的晶面集中, 但整体上依然体现出表层呈现拉应力, 内部呈现压应力的状态; 最大拉应力有所下降, 约1.78 MPa, 最大压应力有所增大, 约2.79 MPa。

图 7 被5%粘结剂包覆的TATB晶体的第一主应力分布图 Fig.7 The 1st principal stress distributing in the TATB crystal wrap with 5% binder

图 8是含11%F2314粘结剂包覆的TATB基PBX降温至室温时残余应力的分布图, 其中图 8a是含粘结剂的第一主应力分布, 图 8b是三向主应力矢量分布。从图 8a整体的应力分布可以看出, 粘结剂在TATB晶体热膨胀系数最小的方向上承受的应力较大, 约-2.85 MPa, 这也是TATB晶体的最大压缩应力。

图 8 11%粘结剂包覆的TATB晶体的应力分布 Fig.8 The stress distributing in the TATB crystal wrap with 11% binder

总体而言, 随着粘结剂含量的升高, TATB基PBX在降温的过程中体现出TATB晶体表面残余应力由拉应力逐渐向压应力转变的特点, 而其晶体内部始终体现为压缩应力状态, 这与试验测试的结果基本一致。造成这一结果的根本原因是粘结剂和炸药晶体热膨胀系数存在较大差异, 在降温收缩的过程中, 粘结剂等效于一层绷紧的膜, 把TATB晶体包覆其中, 而在晶体最小热膨胀系数的方向上, 就会呈现出相对较大的压缩应力; 这种压缩效应随粘结剂含量的增多而越发明显, 最终使得TATB晶体的表面残余应力特征从拉应力向压应力转变, 从图 8中的三向主应力矢量分布可清晰地看到粘结剂这种“包覆压缩”特征。

4 结论

(1) 不含粘结剂的TATB基PBX的残余应力为拉应力, 当F2314粘结剂含量增加时, TATB基PBX残余应力逐渐从拉应力转变为压应力, 而其力学性能也逐渐提高。

(2) 基于简化模型对不同粘结剂含量TATB基PBX降温过程中的残余应力形成演化数值模拟结果与实验规律吻合较好。

(3) 分析认为, 热压成型后热膨胀系数较大的F2314对TATB晶体有收缩约束作用, 使TATB晶体拉伸残余应力减小, 并且随着粘结剂含量增大而收缩约束作用增强, 导致TATB晶体残余应力从拉应力转变为压应力。

参考文献
[1] 董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989.
[2] Charles L.Mader, Terry R. Gibbs, Charles E. Morris, et al. LASL explosive property data[M]. USA: University of Californic Press, 1980.
[3] Withers P J, Turski M, Edwards L, et al. Recent advances in residual stress measurement[J]. Pressure Vessels and Piping, 2008, 85: 118-127. DOI:10.1016/j.ijpvp.2007.10.007
[4] 刘金娜, 徐滨士, 王海斗, 等. 材料残余应力测定方法的发展趋势[J]. 理化检测-物理分册, 2013, 49(10): 677-682.
LIU Jin-na, XU Bin-shi, WANG Hai-dou, et al. Development tendency of measurement methods for residual stresses[J]. Chinese Journal of Physical Test & Chemical Analyse(Part A: Physical Test), 2013, 49(10): 677-682.
[5] HUANG Xian-fu, LIU Zhan-wei, XIE Hui-min. Rencent progress in residual stress measurement techniques[J]. Acta Mechanica Solida Sinica, 2013, 26(6): 570-583. DOI:10.1016/S0894-9166(14)60002-1
[6] Turnbull A, Maxwell A S, Piliai S. Residual stress in polymers-evaluation of measurement techniques[J]. Materials Science, 1999, 34: 451-459. DOI:10.1023/A:1004574024319
[7] Prevey P S. X-ray diffraction residual stress techniques[M]. USA: Metals Handbook 10, ASM, Metals Park, 1986: 380-392.
[8] 陈靖华, 赵北君, 朱世富, 等. 塑料粘结炸药残余应力测试方法研究[J]. 四川大学学报(自然科学版), 2005, 42(2): 296-299.
CHEN Jing-hua, ZHAO Bei-jun, ZHU Shi-fu, et al. Study of measuring methods of residual stress in polymer bonded explosives[J]. Journal of Sichuan University(Natural Science Edition), 2005, 42(2): 296-299.
[9] 王守道. X射线法测定药柱的残余应力[J]. 含能材料, 1994, 2(4): 35-39.
WANG Shou-dao. X-ray method of residual stress measurement in explosive charges[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 1994, 2(4): 35-39.
[10] 雍志华, 朱世富, 赵北君, 等. X射线法测量粘结炸药的残余应力[J]. 四川大学学报(工程科学版), 2007, 39(5): 101-105.
YONG Zhi-hua, ZHU Shi-fu, ZHAO Bei-jun, et al. Residual stress test of bonded explosives by X-ray diffraction method[J]. Journal of Sichuan University(Engineering Science Edition), 2007, 39(5): 101-105.
[11] 周红萍, 李敬明, 李丽, 等. TATB基高聚物粘结炸药残余应力的测试和消除[J]. 含能材料, 2008, 16(1): 37-40.
ZHOU Hong-ping, LI Jing-ming, LI Li, et al. Testing and relieving of residual stress for polymer bonded explosive based on TATB[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(1): 37-40.
[12] 张伟斌, 赵北君, 田勇, 等. 高聚物粘结炸药试件应力状态的超声法测试技术[J]. 含能材料, 2006, 14(2): 136-138.
ZHANG Wei-bin, ZHAO Bei-jun, TIAN Yong, et al. Ultrasonic testing stress of polymer bonded explosive specimens[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(2): 136-138.
[13] Johnson HD. Diametric disc and standard tensile test correlation study[R]. MHSMP-81-22, 1981.
[14] 陈鹏万, 黄风雷, 张瑜, 等. 用巴西实验评价炸药的力学性能[J]. 兵工学报, 2001, 22(4): 533-537.
CHEN Peng-wan, HUANG Feng-lei, ZHENG Yu, et al. Brazilian test and its application in the study of the mechanical properties of explosives[J]. Acta Armamentari, 2001, 22(4): 533-537.
[15] Cheng Liu, Darla G Thompsonz, Manuel L Lovatoy, et al. Macroscopic Crack Formation and Extension in Pristine and Artificially Aged PBX 9501[C]//Proc 14th Int Detonation symposium, 2010,
[16] 温茂萍, 唐维, 周筱雨, 等. 基于圆弧压头巴西试验测试脆性炸药拉伸性能[J]. 含能材料, 2013, 21(4): 490-494.
WEN Mao-ping, TANG Wei, ZHOU Xiao-yu, et al. The tensile mechanical properties of brittle explosives evaluated with Brazilian test of arc compress head[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013, 21(4): 490-494.
[17] Jie Sun, Bin Kang, Haobin Zhang, et al. Investigation on irreversible expansion of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene cylinder[J]. Central European Journal of Energetic Materials, 2011, 8(1): 69-79.
[18] 周红萍, 庞海燕, 温茂萍. 三种粘结剂材料的力学性能对比研究[J]. 材料导报, 2009, 23(12): 34-35.
ZHOU Hong-ping, PANG Hai-yang, WEN Mao-ping. Comparative studies on the mechanical properties of three kinds of binders[J]. Chinese Journal of Material Letter, 2009, 23(12): 34-35.
图文摘要

PBX with no binder exhibit tensile residual stress and it turns to compressive stress as the binder content increases, which indicates the mechanical properties are enhanced.