文章快速检索     高级检索
  含能材料  2018, Vol. 26 Issue (8): 677-685.  DOI: 10.11943/CJEM2017374
0

引用本文  

蒙君煚, 周霖, 金大勇, 曹少庭, 王亲会. DNAN/HMX熔铸炸药的流变特性[J]. 含能材料, 2018, 26(8): 677-685. DOI: 10.11943/CJEM2017374.
MENG Jun-jiong, ZHOU Lin, JIN Da-yong, CAO Shao-ting, WANG Qin-hui. Rheological Properties of DNAN/HMX Melt-cast Explosives[J]. Chinese Journal of Energetic Materials, 2018, 26(8): 677-685. DOI: 10.11943/CJEM2017374.

作者简介

蒙君煚(1987-), 男, 博士, 助理研究员, 主要从事高能钝感混合炸药研究。e-mail:mengjunjiong204@163.com

通信联系人

周霖(1962-), 男, 教授, 博士生导师, 主要从事炸药应用技术研究。e-mail:zhoulin@bit.edu.cn

文章历史

收稿日期:2017-12-01
修回日期:2018-02-04
网络出版:2018-04-24
DNAN/HMX熔铸炸药的流变特性
蒙君煚 1, 周霖 2, 金大勇 1, 曹少庭 1, 王亲会 1     
1. 西安近代化学研究所, 陕西西安 710065;
2. 北京理工大学爆炸科学与技术国家重点实验室, 北京 100081
摘要:为了探索奥克托今(HMX)固含量、体系温度、HMX粒度、HMX颗粒级配及功能助剂等对2,4-二硝基苯甲醚(DNAN)/ HMX悬浮液流变性的影响规律,采用数字粘度仪,研究了不同物料状态下DNAN/HMX悬浮体系的表观粘度。结果表明:当HMX固含量为3%时,悬浮液呈现牛顿流体特性;HMX固含量为12%~30%时,该悬浮液表观粘度可用Ostwald-deWaele模型进行描述,非牛顿指数n值从0.842降低到0.374。95~116 ℃时,温度对表观粘度的影响可以用Arrhenius方程描述,活化能Ea从25.97 kJ·mol-1增加到30.17 kJ·mol-1。表观粘度随着粒度的增大而降低,当粒度为999.5 μm与粒度为132.6 μm的颗粒级配比为2:1时,表观粘度达到最小值,且固含量可达80%。功能助剂N-甲基-4-硝基苯胺(MNA)、三-(β氯乙基)磷酸酯(CEF)降低了悬浮液的表观粘度,而脱水山梨醇单硬脂酸酯聚氧乙烯醚(吐温60)、微晶蜡-80(MV80)、乙酸丁酸纤维素(CAB)、热塑性聚氨酯-5702(TPU5702)提高了悬浮液的表观粘度。
关键词2, 4-二硝基苯甲醚(DNAN)     流变特性     固含量     颗粒级配     功能助剂    
Rheological Properties of DNAN/HMX Melt-cast Explosives
MENG Jun-jiong 1, ZHOU Lin 2, JIN Da-yong 1, CAO Shao-ting 1, WANG Qin-hui 1     
1. Xi′ an Modern Chemistry Research Institute, Xi′ an 710065, China;
2. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract: To explore the influence rule of octogen (HMX) solid content, system temperature, HMX particle size, HMX particle gradation and functional additives etc.on the rheological properties of 2, 4-dinitroanisole (DNAN)/HMX suspensions, the apparent viscosity of DNAN/HMX suspensions under different material state conditions was investigated by a digital viscometer.Results show that the suspension presents Newtonian fluid characteristics when the solid content is 3%.Apparent viscosity of the suspension can be described with Ostwald-deWaele model when the HMX solid content is 12%-30%, and the value of nonNewton index n is decreased from 0.842 to 0.374.The influence of temperture on the apparent viscosity can be described by the Arrhenius equation when the temperture is in the range of 95-116℃, and the activation energy Ea increases from 25.97 kJ·mol-1 to 30.17 kJ·mol-1.The apparent viscosity decrases as the particle size increases.When the particle gradation ratio of 999.5 μm particle size to 132.6 μm is 2:1, the apparent viscosity reaches the minimum and the solid content is up to 80%.Functional additives N-methyl-4-nitroaniline (MNA) and tri (β chloroethyl) phosphate (CEF) make the apparent viscosity of the suspensions decrease, while dehydrated sorbitol monostearate polyoxyethylene ether (Tween 60), microcrystalline wax-80(MV80), cellulose acetate butyrate (CAB), and thermoplastic polyurethane-5720(TPU 5720) make the the apparent viscosity of the suspensions increase.
Key words: 2, 4-dinitroanisole (DNAN)    rheological property    solid content    particle gradation    functional additives    
1 引言

流变特性是指物质受外力作用变形和流动的性质,它包括流动性和流平性。熔铸炸药制造涉及混合、浇铸等成型工艺,其中药浆的流动性对药柱成型、浇铸质量会产生重大影响[1]。药浆的流动性可用表观粘度来表征,药浆粘度越大,流动性越差;而至今还没有明晰的数学表达式可以定量描述物料的流平过程[2]

2,4,6-三硝基甲苯(TNT)基炸药作为目前应用最广泛的熔铸炸药,其流变特性已得到系统地研究。徐更光等[3]认为熔融TNT近似牛顿流体;当黑索今(RDX)含量小于50%时,TNT/RDX悬浮液呈宾汉姆流体性质;当RDX含量为55%~70%时,该悬浮液为触变性流体。David等[4]研究了B炸药(TNT/RDX)的流变特性,发现表观粘度随剪切速率的增加而降低,为剪切变稀的非牛顿流体。Koch等[5]研究了TNT悬浮液中RDX粒度与粘度的关系,结果表明:RDX粒度大于200 μm时,粒度对粘度影响较小;粒度在100~200 μm时,粘度随粒度减小而增大;当粒度小于50 μm时粘度大幅增加。Parry等[6]研究了温度对熔融TNT粘度的影响,结果表明,在82.0~95.4 ℃,温度与粘度关系遵循Arrhenius方程。黄辉[7]采用混料回归设计,建立颗粒级配模型,优化级配比例,获得了最佳颗粒级配,提高了悬浮体系的固相含量。徐更光等[3, 8]研究了添加剂对TNT/RDX悬浮液流变学性质的影晌,结果表明少量添加剂的加入不仅可降低悬浮液的表观粘度,还可降低其屈服值。

然而,长期的应用研究表明,TNT基熔铸炸药存在渗油、缩孔疏松等固有缺陷,对弹药的安全性会产生不利影响[9],很难满足钝感弹药要求[10],因此各国一直在寻找它的替代物。2,4-二硝基苯甲醚(DNAN)是一种新型不敏感熔铸载体炸药,近年来,美国[11-16]、澳大利亚[17-19]、波兰[20]、挪威[21-22]等已研制成功多种配方,不同配方的装药生产线业已建成投产,奠定了DNAN基熔铸炸药的应用基础。截至目前,国外学者针对已定型的DNAN基熔铸炸药配方(如PAX-34、IMX-104、OSX-8[23]、OSX-12[24])进行了粘度测试,但并没有对其流变特性进行深入研究。

为此,本研究测试了DNAN/HMX悬浮液的表观粘度,系统地研究了HMX固含量、体系温度、HMX粒度、HMX颗粒级配及功能助剂等对DNAN/HMX悬浮液流变性的影响规律,为DNAN基熔铸炸药配方设计提供一定技术支撑。

2 实验部分 2.1 试剂

DNAN,工业级,湖北东方化工有限公司;N-甲基- 4-硝基苯胺(MNA),工业级,东方化工集团有限公司;脱水山梨醇单硬脂酸酯聚氧乙烯醚(吐温60),AR,北京益利精细化学品有限公司;三-(β氯乙基)磷酸酯(CEF),AR,上海彭海化工厂;乙酸丁酸纤维素(CAB),工业级,九鼎化学科技有限公司;微晶蜡-80(MV80),工业级,上海艳尔美日用化工有限公司;热塑性聚氨酯-5702(TPU5702),工业级,路博润特种化学制造有限公司。HMX,工业级,甘肃银光化学工业集团。

2.2 HMX粒度测试

通过Mastersizer 2000M激光粒度测试仪(Mal- vern Instruments Ltd.,Malvern,U.K.)测试五种HMX的粒度分布(PSD),测试时以蒸馏水作为介质,同时配有Hydro 2000 MU超声波分散仪(Malvern Instru- ments Ltd.,Malvern,U.K.)。每个样品进行三次测量并取算术平均值。5种HMX(分别命名为S1、S2、S3、S4和S5)粒度测试结果见图 1

图 1 五种HMX的粒度分布 Fig.1 Particle size distribution of five kinds of HMX

图 1可知,HMX的粒度分布符合对数正态分布;5种粒度HMX的d50分别为6.9(S1)、50.6(S2)、85.6(S3)、132.6(S4)µm和999.5(S5)µm。

2.3 样品制备及粘度测试

表观粘度测试采用博勒飞DV -Ⅲ数字粘度仪(Brook field Engineering Labs,Inc,Mid-dleboro,USA)。测试时,将DNAN/HMX药浆中各组份按一定配比称量,分别加入到仪器配套的小量样品适配器内,采用Huber油浴(230-cc-NR,Huber Kältemaschinenbau GmbH,Offenburg,Germany)进行加温熔化,待达到测试温度时搅拌均匀开始测量,读取相应的剪切速率、表观粘度及剪切压力。颗粒在悬浮液中的沉降效应对测试结果的影响非常明显[15],因此,首先应选取合适的测试粒度,最大限度消除沉降效应。

选取三种典型HMX颗粒S1(最小粒度)、S4(中间粒度)和S5(最大粒度)作为研究对象,测试DNAN/HMX悬浮液表观粘度随时间的变化规律,结果如图 2所示。

图 2 沉降对DNAN/HMX悬浮液表观粘度的影响 Fig.2 Effect of sediment on the apparent viscosity of DNAN/ HMX suspensions

图 2可知,当HMX粒度增加时,沉降效应对表观粘度的影响加剧,而对S1样品,可忽略沉降影响。所以,为了避免沉降效应对实验结果产生影响,除特别说明外,本研究均选取S1作为分散相颗粒,同时试验均在105 ℃时进行测量,测试均在3 min内完成。

3 结果与讨论 3.1 HMX固含量对DNAN/HMX悬浮液流变性的影响 3.1.1 HMX固含量对DNAN/HMX悬浮液表观粘度的影响

增加高能固相颗粒含量可以提高熔铸炸药的爆炸威力,但高固含量伴随高粘度,使炸药流动性变差,在浇铸过程中容易出现气孔或缩孔,从而影响装药质量及安全性能,因此研究固含量对DNAN/HMX悬浮液粘度的影响非常必要。

测试了HMX固含量φ为0~30%时,DNAN/HMX悬浮液的剪切速率与表观粘度的关系,结果如图 3所示。

图 3 HMX固含量对DNAN/HMX悬浮液表观粘度的影响 Fig.3 Effect of HMX solid contents on the apparent viscosity of DNAN/HMX suspensions

图 3a可知,固含量φ ≤ 10%时,表观粘度随剪切速率呈线性变化;当3% < φ ≤ 10%时,表观粘度随剪切速率的增加而降低,DNAN/HMX悬浮液呈现剪切变稀的特性;当φ < 3%时,表观粘度随剪切速率的增加而增加,呈现剪切变稠的特性,这可能是因为DNAN纯度低含有杂质从而影响测试结果[16];当φ = 3%时,随剪切速率的增加表观粘度几乎不变,呈现牛顿流体特性,这是因为当温度为100 ℃时,HMX在DNAN中的溶解度为3.02%[25],因此当加入HMX含量低于3%时,HMX全部溶解于DNAN中,流体特性没有改变,但当固含量大于3%时,流体变为固液两相流,流体特性改变。

图 3b可知,当固含量为12%~30%时,表观粘度与剪切速率呈非线性关系;随着HMX固含量的增加,悬浮液呈现出剪切变稀的特性。

固含量对DNAN/HMX悬浮液的表观粘度有显著影响,原因是当悬浮液内的HMX含量较低时,HMX颗粒之间存在液相DNAN,导致颗粒之间的摩擦较小,搅拌受到固体颗粒的阻力小,表观粘度较低;当固含量增加后,由于基体炸药DNAN体积的减小,颗粒间距显著降低,颗粒的相对运动变得较困难,搅拌阻力由于固相颗粒间的频繁接触和相互碰撞变大,悬浮液的流动性下降,导致表观粘度变大。

当固含量为12%~30%时,表观粘度与剪切速率呈非线性关系,可以用Ostwald-deWaele能量幂律方程[26]进行描述,见式(1):

$ {\eta _{\rm{a}}} = K \cdot {\dot \gamma ^{n - 1}} $ (1)

式中,ηa为表观粘度,Pa·s;K为稠度指数;$ \dot \gamma $为剪切速率,s-1n为非牛顿指数,当n < 1时,流体为剪切变稀流体,当n>1,流体为剪切增稠流体,当n=1,流体为牛顿流体。

采用式(1),对图 3b中的五条曲线进行拟合,拟合结果见图 4;拟合参数Kn表 1

图 4 HMX固含量为12%~30%时用Ostwald⁃deWaele方程拟合的结果 Fig.4 Results fitted by Ostwald⁃deWaele equation when HMX solid contents is 12%-30%
表 1 不同HMX固含量DNAN/HMX悬浮液的拟合参数Kn Tab.1 Values of the fitting parameters K and n for DNAN/ HMX suspensions with different HMX solid contents

表 1可知,拟合参数的相关系数都大于0.95,表明Ostwald - deWaele方程可准确地描述固含量为12%~30%时DNAN /HMX悬浮液的流变特性。其中,n值随着固含量的增加而减小。n值越小,表明悬浮液非牛顿特性越明显[27]

3.1.2 HMX固含量对DNAN/HMX悬浮液剪切应力的影响

在熔铸炸药流变性研究中,不仅要关注其悬浮液的表观粘度,而且要关注其屈服应力。屈服应力是指悬浮液出现流动迹象时所需要的最小剪切应力,它对DNAN/HMX悬浮液的流速和浇铸性能有显著影响。

图 5所示为实验测得不同固含量时剪切应力(τ)与剪切速率($ \dot \gamma $)的关系。通过$ \tau - \dot \gamma $曲线,可采用不同模型拟合得到其屈服应力。

图 5 HMX固含量对DNAN/HMX悬浮液剪切应力的影响 Fig.5 Effect of HMX solid contents on the shear rate of DNAN/HMX suspensions

Bingham模型[28]

$ \tau = {\tau _0} + {\eta _{\rm{p}}}\dot \gamma $ (2)

Modified Bingham模型[28]

$ \tau = {\tau _0} + {\eta _{\rm{p}}}\dot \gamma + c{{\dot \gamma }^2} $ (3)

Casson模型[29]

$ \sqrt \tau = \sqrt {{\tau _0}} + \sqrt {{\eta _{\rm{p}}}\dot \gamma } $ (4)

Herchel-Bulkley模型[30]

$ \tau = {\tau _0} + K'{{\dot \gamma }^2} $ (5)

式中,τ为剪切应力,Pa;$ {\dot \gamma } $为剪切速率,s-1τ0为屈服应力,Pa;ηp为塑性粘度,Pa·s;K′为一致性系数;c为回归系数。

采用式(2)~式(5)对图 5中各条曲线进行拟合,得到不同固含量时的屈服应力,结果如图 6所示。

图 6 用不同流变模型拟合的屈服应力 Fig.6 Yield stress fitted by various rheological models

图 6所示,不同固含量时Casson模型得到的屈服应力值最小,Herchel-Bulkey模型得到的屈服应力值最大。屈服应力随着固含量的增加而增加,这是因为屈服应力的存在是因为在一定的固含量下,颗粒间的吸引力使体系形成了疏松而有弹性的网状结构,药浆必须在外力的作用下发生一定程度的解构才能发生流动变形[31]。固含量越多,悬浮液中颗粒越多,由于颗粒间凝聚作用的加强使得颗网状结构越强,悬浮液的屈服应力越大。

不同流变模型对实验结果拟合的准确性可用标准误差衡量,见式(6)[28]

$ S.E. = \frac{{1000 \times {{\left[ {\sum {{\left( {{X_{\rm{m}}} - {X_{\rm{c}}}} \right)}^2}/\left( {n' - 2} \right)} \right]}^{{}^{1}\!\!\diagup\!\!{}_{2}\;}}}}{{\Delta X}} $ (6)

式中,Xm是测量值;Xc是计算值;n′是数据点的数量;ΔX=最大测量值Xm,max-最小测量值Xm,min

用公式(6)对各种模型的标准误差进行计算,结果见表 2

表 2 用不同流变模型拟合的标准误差 Tab.2 Standard error fitted by various rheological models

表 2可知,Modified Bingham模型的标准误差最小,对实验结果的描述最准确。因此当不考虑剪切速率的影响时,Modified Bingham模型可描述DNAN/HMX基熔铸炸药的流变行为。

3.2 体系温度对DNAN/HMX悬浮液流变性的影响

温度是影响熔铸炸药浇铸性能的重要因素。温度太高时,凝固组织结晶粗大,凝固后药柱内应力大;温度较低时,药浆粘度大,凝固过程中易出现气孔及缩孔等瑕疵。

图 7为当剪切速率330 s-1,HMX固含量分别为0%、5%、10%、15%,体系温度在95~116 ℃变化时DNAN/HMX悬浮液表观粘度-温度的变化曲线。

图 7 不同HMX固含量DNAN/HMX悬浮液的表观粘度与温度的关系 Fig.7 The relationships between apparent viscosity and temperatures for DNAN / HMX suspensions with different HMX solid contents

图 7所示,当体系温度升高时,表观粘度降低;而且随着固含量的增加,温度对表观粘度的影响更加显著,这是因为粘度可以被描述为一个流动阻力,当体系温度升高时,由于分子热能的增加以及由分子热膨胀引起的分子间距离的增加导致流动阻力减小[32]

温度对表观粘度的影响可以用Arrhenius方程(式(7))[33]描述:

$ {\eta _{\rm{a}}} = A{{\rm{e}}^{\frac{{{E_{\rm{a}}}}}{{RT}}}} $ (7)

式中,A为指前因子,Pa∙s;Ea为活化能,kJ∙mol-1R为气体常数,8.314 kJ∙mol-1∙K-1T为绝对温度,K。

将式(7)取对数,得到:

$\ln {\eta _{\rm{a}}} = \ln A + \frac{{{E_{\rm{a}}}}}{{RT}} $ (8)

图 7进行lnηa-1/T的线性拟合,拟合结果如图 8所示;拟合后得到参数AEa,见表 3

图 8 用Arrhenius方程拟合的结果 Fig.8 Results fitted by Arrhenius equation
表 3 不同HMX固含量时DNAN/HMX悬浮液的Arrhenius参数 Tab.3 Arrhenius parameters for DNAN /HMX suspensions with different HMX solid contents

Arrhenius方程拟合的结果见表 3。由表 3可见,不同HMX固含量时的相关系数都大于0.989,可见Arrhenius方程可以精确地对温度为95~116 ℃时DNAN/HMX悬浮液进行描述。随着固含量的升高,活化能增加。这是由于在高固体含量时,单位体积内含有的颗粒增加使得分子间作用力加强,这样就导致分子克服周围分子发生迁移所需要的能量增加,活化能变大。活化能不仅反映悬浮液流动的难易程度,更重要的是反映悬浮液粘度对温度变化的敏感性,活化能越高表明粘度相对温度的变化越敏感[34]

3.3 HMX粒度对DNAN/HMX悬浮液流变性的影响

为了减少实验过程中细颗粒出现团聚现象,提高测试结果的可靠性,选择HMX固含量为10%,分别对d50为6.9(S1),50.6(S2),85.6(S3),132.6(S4)μm的DNAN/HMX悬浮液表观粘度进行测试,结果见图 9

图 9 HMX粒度对DNAN/HMX悬浮液表观粘度的影响 Fig.9 Effect of particle size of HMX on the apparent viscosity of DNAN/HMX suspensions

图 9所示,在一定剪切速率下,表观粘度随着粒度的增大而降低(当粒度大于50 μm(S2、S3、S4)时,粒度对表观粘度的影响非常小)。产生这种现象的原因分析如下[31]:第一,在一定的固含量时,粒度减小,颗粒数目增多,颗粒间平均距离减小,颗粒进入周围颗粒的相互吸收区域机会增大,颗粒间相互作用力加强,形成的结构牢固,破坏它需要的外力增大,所以屈报应力增大,粘度增大。第二,由于颗粒数目的增多,颗粒总的有效体积增大。这是因为每个颗粒的水化作用,即表面形成一层水化膜,使颗粒有效体积比真实体积要大,位移阻力增大,粘度增大。第三,颗粒数目增多,颗粒表面润湿所需的药液量增加,自由药液量减小,移动阻力增大,粘度增大。

HMX粒度对DNAN/HMX悬浮液剪切应力的影响见图 10。用公式(2)~式(5)对图 10曲线进行拟合,得到不同粒度的屈服应力,如图 11所示。各种模型拟合后的标准误差见表 4

图 10 不同HMX粒度DNAN/HMX悬浮液的剪切应力与剪切速率的关系 Fig.10 The relationships between shear stress and shear rate for DNAN /HMX suspensions with different HMX parti⁃ cle sizes
图 11 对不同HMX粒度DNAN/HMX悬浮液用各种模型拟合得到的屈服应力 Fig.11 Yield stress estimated by various rheological models for DNAN/HMX suspensions with different HMX particle sizes
表 4 对不同HMX粒度DNAN/HMX悬浮液用各种模型拟合的标准误差 Tab.4 Standard error estimated by various rheological models for DNAN/HMX suspensions with different HMX par⁃ ticle sizes

图 11所示,Casson模型得到的屈服应力值最小,Herchel-Bulkey模型得到的屈服应力值最大;而且无论使用何种模型进行拟合,屈服应力都随着粒度的增加而减小。悬浮液中细颗粒愈多,悬浮液的屈服应力愈大,这是因为细颗粒的凝聚作用是形成屈服应力的主要因素[35]

表 4可知,Modified Bingham模型拟合的标准误差最小,对实验结果的描述最准确。

3.4 HMX颗粒级配对DNAN/HMX悬浮液流变性的影响

颗粒级配不仅可使固体颗粒获得较高的堆积密度,而且会显著影响悬浮体系的流变性能。

图 12a为剪切速率为10 s-1时,不同级配比例时DNAN/HMX悬浮液表观粘度与固含量的关系;图 12b为固含量为40%时,不同级配比例时DNAN/HMX悬浮液表观粘度与剪切速率的关系。

图 12 HMX颗粒级配对DNAN/HMX悬浮液表观粘度的影响 Fig.12 Effect of HMX particle gradation on the apparent viscosity of DNAN/HMX suspensions

图 12a所示,当两级颗粒级配的固含量小于40%时,颗粒级配对悬浮液表观粘度影响较小。当固含量大于40%时,颗粒级配对表观粘度粘度的影响加大,接近最大堆积密度0.8时,表观粘度急剧增加。在相同固含量时,当级配比例为S5:S4 =2:1时,表观粘度达到最小值。其原因是当级配比例合适时,小颗粒有相当一部分在大颗粒表面及间隙之间,充当流动介质连接大颗粒与基体炸药,颗粒由滑动状态转变为滚动状态,摩擦阻力减小;另外分布于大颗粒之间的流动介质被释放,药浆粘度降低,流动性提高[36]

进一步研究发现(见图 12b),当固含量为40%时,表观粘度随粒度的增加而减小(S2含量0~80%),颗粒极配对其影响较小。因此,在HMX固含量低于40%时不需要采用颗粒级配。

3.5 功能助剂对DNAN/HMX悬浮液流变性的影响

为了研究功能助剂对DNAN/HMX悬浮液流变性的影响,选择MNA、CEF、吐温60、MV80、CAB、TPU5702等6种常见的功能助剂作为研究对象,在HMX固含量为10%的条件下,测试了功能助剂含量分别为0.5%、1%、1.5%时DNAN/HMX悬浮液的表观粘度,结果如图 13所示。

图 13 6种功能助剂对DNAN/HMX悬浮液表观粘度的影响 Fig.13 Effect of six kinds of functional additives on the apparent viscosity of DNAN/HMX suspensions

图 13所示,随着添加剂含量的增加,MNA、CEF可以降低悬浮液的表观粘度,而吐温60、MV80、CAB、TPU5702可以提高悬浮液的表观粘度,而CAB比较特殊(图 13e),加入不同量的CAB时悬浮液均呈现牛顿流体特性。

其原因分析如下:

(1)DNAN中加入MNA时,MNA与DNAN形成低熔点共熔物,使其熔点降低,相当于增加了温度差,粘度降低;加入CEF后,HMX颗粒间的范德华力减弱,增加了颗粒间的流动性,粘度降低。

(2)DNAN中加入吐温60后,由于润湿性的提高,HMX颗粒包覆更多的DNAN熔液,这样就造成游离态的DNAN液体减少,粘度增加;加入微晶蜡后,由于其自身粘度较大,增加了基体的粘度,导致悬浮液的粘度增加。聚氨酯弹性体分子结构是由软段(低聚物多元醇)和硬段(多异氰酸酯、扩链交联剂等)嵌段而成的,在其大分子之间,特别是硬链段之间的静电力很强,而且常常有大量的氢键生成,这种强烈的静电力作用,可以使其周围吸附大量的HMX颗粒,导致HMX形成团聚,使粘度增加。CAB分子量大,分子链较长,当加入悬浮液时,可能会形成对HMX的包覆,弱化了固相颗粒间的摩擦和滚动,其流变行为更接近于牛顿流体,同时降低颗粒的流动性,使悬浮液粘度增加。

4 结论

采用旋转粘度计测量了DNAN/HMX熔铸炸药的表观粘度,研究了HMX固含量、体系温度、HMX粒度、HMX颗粒级配及功能助剂等对DNAN/HMX悬浮液流变性的影响规律,得到如下结论:

(1)表观粘度随HMX固含量的增加而增加。当固含量大于3%时,悬浮液呈现出剪切变稀的特性;当固含量小于3%时,悬浮液呈现剪切变稠的特性;当固含量为3%时,悬浮液呈现牛顿流体特性。同时发现固含量为12%~30%时,DNAN/HMX悬浮液流变特性可用Ostwald-de Waele方程进行描述。

(2)表观粘度随体系温度的增大而降低。体系温度对粘度的影响可以用Arrhenius方程描述,随着固含量的增加,活化能从25.97 kJ∙mol-1增加到30.17 kJ∙mol-1

(3)表观粘度随粒度的增大而降低,当粒度大于50 μm时,颗粒度对表观粘度的影响很小。

(4)当两级颗粒级配的固含量小于40%时,颗粒级配对悬浮液表观粘度影响较小;当级配比例为S5:S4= 2:1时,表观粘度达到最小值,同时固含量可达80%。

(5)MNA、CEF降低了悬浮液的表观粘度,而吐温60、MV80、CAB、TPU5702提高了悬浮液的表观粘度。其中CAB使悬浮液变为牛顿流体,而其它5种功能助剂都没有改变悬浮液剪切变稀的特性。

参考文献
[1]
郑保辉, 罗观, 舒远杰, 等. 熔铸炸药研究现状与发展趋势[J]. 化工进展, 2013, 32(6): 1341-1346.
ZHENG Bao-hui, LUO Guan, SHU Yuan-jie, et al. Research status and prospect of melt-cast explosive[J]. Chemical Industry and Engineering Progress, 2013, 32(6): 1341-1346.
[2]
刘慧慧, 郑申声, 关立峰, 等. HMX级配对醇醛高聚物粘结炸药流变性能的影响[J]. 含能材料, 2016, 24(10): 978-984.
LIU Hui-hui, ZHENG Shen-sheng, GUAN Li-feng, et al. Effects of HMX gradation on the rheological properties of the aldol based polymer bonded explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(10): 978-984. DOI:10.11943/j.issn.1006-9941.2016.10.010
[3]
徐更光, 徐军培. TNT/RDX悬浮液的流变学性质[J]. 兵工学报, 1991, 12(2): 71-74.
XU Geng-guang, XU Jun-pei. Rheological properties of TNT/RDX suspensions[J]. Acta Armamentarhii, 1991, 12(2): 71-74.
[4]
David K Z, Marcel P N, Jonathan M.Z. Molten Composition B viscosity at elevated temperature[J]. Journal of Energetic Materials, 2016, 34(4): 368-383. DOI:10.1080/07370652.2015.1102179
[5]
孙业斌. 军用混合炸药[M]. 北京: 兵器工业出版社, 1994: 127-139.
SUN Ye-bin. Military mixed explosives[M]. Beijing: Weaponry Industry Press, 1994: 127-139.
[6]
Parry M A, Billon H H. A note on the coefficient of viscosity of pure molten 2, 4, 6-trinitrotoluene(TNT)[J]. Rheologica acta, 1988, 27(6): 661-663. DOI:10.1007/BF01337463
[7]
黄辉. 颗粒级配技术及其在含能材料中的应用[J]. 含能材料, 2001, 9(4): 161-164.
HUANG Hui. Particle grade technique and application on energetic materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2001, 9(4): 161-164.
[8]
徐军培, 徐更光, 刘德润. 添加剂对TNT/RDX(40/60)悬浮液流变性质的影响[J]. 北京理工大学学报, 1990, 10(3): 102-106.
XU Jun -pei, XU Geng -guang, LIU De -run. Influence of additives on the rheological properties of TNT/RDX suspension[J]. Journal of Beijing Institute of Technology, 1990, 10(3): 102-106.
[9]
Doll D W, Hanks J M, Allrend A G. Reduced sensitivity, meltpourable TNT replacements: US, 27067024[P]. 2006.
[10]
王永川, 唐兴民. 梯黑药柱的改性研究[J]. 含能材料, 1994, 2(1): 7-11.
WANG Yong-chuan, TANG Xing-min. Study on modification of cast TNT-RDX charges[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 1994, 2(1): 7-11.
[11]
Brian R. The characterization of IM explosive candidates for TNT replacement[C] //2007 IM/EM Technology symposium. Florida, USA, 2007.
[12]
Jim R. Common low cost IM explosive program to replace TNT[C] //2007 IM/EM Technology symposium. Florida, USA, 2007.
[13]
Fung V, Schreiber B, et al. Process improvement and optimization of insensitive explosive IMX -101[C] //2012 IM /EM Technology symposium. Florida, USA, 2012.
[14]
Fung V. Development and manufacture of an insensitive com position B replacement explosive IMX-104 for mortar application[C] //2010 IM /EM Technology symposium. Munich, Germany, 2010.
[15]
Pelletier P, Laroche I, Lavigne D, et al. Processing studies of DNAN based melt-pour explosive formulations[C] //2009 IM/ EM Technology symposium. Tucson, USA, 2009.
[16]
Pierre P, Daniel L. Additional properties studies of DNAN based melt-pour explosive formulation[C] //2010 IM/EM Technology symposium. Munich, Germany, 2010.
[17]
Davies P J, Provatas A. Characterization of 2, 4-dintroanisole: an ingredient for use in low sensitivity melt cast formulations[R]. DSTO-TR-1904, Defence Science and Technology Organisation, Melbourne, Australian 2006.
[18]
Davies P J, Provatas A. DNAN: A replacement for TNT in Melt-cast formulations[C] //2006 IM/EM Technology symposium. Orlando, Bristol, United Kingdom, 2006.
[19]
Provatas A, Wall C. Thermal Testing of 2, 4-Dinitroanisole (DNAN)as a TNT Replacement for Melt-Cast Explosive[C] // 42th International Annual Conference of ICT. Karlsruhe, 2011.
[20]
Trzciński W, Cudziło S, Dyjak S, et al. A Comparison of the sensitivity and performance characteristics of melt-pour explosives with TNT and DNAN binder[J]. Central European Journal of Energetic Materials, 2014, 11(3): 443-455.
[21]
Gunnar O N. MCX-6100 CH 6027/14 characterization[R]. FFIrapport 2015/02185, Norwegian Defence Research Establishment, Kjeller, Norwegian, 2015.
[22]
Gunnar O N. Determination of detonation velocity and pressure for MCX -6100[R]. FFI-rapport 2015/02323, Norwegian Defence Research Establishment, Kjeller, Norwegian, 2015.
[23]
Pierre P, Isabelle L, Daniel L, et al. Processing studies of DNAN based melt-pour explosive formulations[C] //2009 IM/ EM Technology symposium. Tucson, USA, 2009.
[24]
Annie V, Pierre P, Alberto C, et al. Studies on OSX-12 formu-lation, an aluminized DNAN based melt-pour explosive[C] // 2012 IM/EM Technology symposium. Florida, USA, 2012.
[25]
Grau H, Gandzelko A, Samuels P. Solubility determination of raw energetic materials in molten 2, 4-dinitroanisole[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4): 604-608. DOI:10.1002/prep.201300083
[26]
Vandresen S, Quadri M G N, de Souza J A R, et al. Temperature effect on the rheological behavior of carrot juices[J]. Journal of Food Engineering, 2009, 92(3): 269-274. DOI:10.1016/j.jfoodeng.2008.11.010
[27]
Hoffman R L. Explanations for the cause of shear thickening in concentrated colloidal suspensions[J]. Journal of Rheology, 1998, 42(1): 111-123. DOI:10.1122/1.550884
[28]
Nehdi M, Rahman M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction[J]. Cement and Concrete Research, 2004, 34(11): 1993-2007. DOI:10.1016/j.cemconres.2004.02.020
[29]
Yahia A, Khayat K H. Analytical models for estimating yield stress of high performance pseudoplastic grout[J]. Cement and Concrete Research, 2001, 31(5): 731-738. DOI:10.1016/S0008-8846(01)00476-8
[30]
Atzeni C, Massidda L, Sanna U. Comparison between rheological models[J]. Cement and Concrete Research, 1985, 15(3): 511-519. DOI:10.1016/0008-8846(85)90125-5
[31]
丁仕强, 朱波. 粒度分布与氧化铁凝聚悬浮体系的流变性[J]. 过滤与分离, 2011, 2(3): 5-8.
DING Shi-qiang, ZHU Bo. A study on the particle size distribution and rheology of coagulated Fe2O3 suspensions[J]. Journal of Filtration & Separation, 2011, 2(3): 5-8.
[32]
Kar F, Arslan N. Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity-molecular weight relationship[J]. Carbohydrate Polymers, 1999, 40(4): 277-284. DOI:10.1016/S0144-8617(99)00062-4
[33]
Giap S G E. The hidden property of Arrhenius-type relationship: viscosity as a function of temperature[J]. Journal of Physical Science, 2010, 21(1): 29-39.
[34]
Sarangapani R, Ramavat V, Reddy S, et al. Rheology studies of NTO-TNT based melt-cast dispersions and influence of particle-dispersant interactions[J]. Powder Technology, 2015, 273: 118-124. DOI:10.1016/j.powtec.2014.12.013
[35]
郑忠. 胶体科学导论[M]. 北京: 高等教育出版社, 1989: 83-97.
ZHENG Zhong. Introduction to Colloid Science[M]. Beijing: Higher Education Press, 1989: 83-97.
[36]
肖扬华. 颗粒级配优化研究--滚动级配法[J]. 推进技术, 1993, 14(4): 60-67.
XIAO Yang-hua. Optimization study on grading composition method of grading composition with particles[J]. Journal of Propulsion Technology, 1993, 14(4): 60-67.
图文摘要

The influences of HMX solid content,system temperature,particle size,particle gradation and functional additives on DNAN/HMX suspensions were investigated by measuring the apparent viscosity of DNAN /HMX suspensions with a Cou- ette type Brookfield viscometer.