文章快速检索     高级检索
  含能材料  2018, Vol. 26 Issue (8): 696-700.  DOI: 10.11943/CJEM2018001
0

引用本文  

李亮亮, 沈飞, 屈可朋, 王辉, 肖玮. 不同密封及包覆下HAE装药快速烤燃的响应特性[J]. 含能材料, 2018, 26(8): 696-700. DOI: 10.11943/CJEM2018001.
LI Liang-liang, SHEN Fei, QU Ke-peng, WANG Hui, XIAO Wei. Response Characteristics of HAE Charge with Different Sealing Condition and Coating Layer in Fast Cook-off[J]. Chinese Journal of Energetic Materials, 2018, 26(8): 696-700. DOI: 10.11943/CJEM2018001.

基金项目

国防基础预研项目(5020501)

作者简介

李亮亮(1983-),男,高级工程师,主要从事火炸药安全性及动态力学性能研究

通信联系人

屈可朋(1983-), 男, 副研究员, 从事材料动态力学响应研究。e-mail:pep2968@163.com

文章历史

收稿日期:2017-12-30
修回日期:2018-03-01
网络出版:2018-05-04
不同密封及包覆下HAE装药快速烤燃的响应特性
李亮亮 , 沈飞 , 屈可朋 , 王辉 , 肖玮     
西安近代化学研究所, 陕西西安 710065
摘要:为评估炸药装药的易损性,设计了不同密封条件(状态1:端盖为2个压力膜/2个钢堵头;状态2:端盖为4个压力膜)及包覆层导热系数(状态3:端盖为4个压力膜,空心玻璃微球(HGMs)部分代替包覆层中的硅橡胶)的烤燃弹结构,研究了奥克托今(HMX)基含Al炸药(HAE)装药在液体燃料外部火烧条件下的响应特性。结果表明,端盖压力膜和空心玻璃微球(HGMs)包覆层均可达到降低炸药装药易损性的目的。泄压面积及包覆层导热系数对炸药装药的快速烤燃特性影响不同,包覆层导热系数降低的烤燃弹(弹体完整,装药和端盖喷出,装药无稳定燃烧),其响应等级较不同密封条件的烤燃弹(弹体完整,装药稳定燃烧)降低。泄压面积与HAE装药表面积的比值大于0.015时,炸药装药即表现为稳定燃烧状态;空心玻璃微球含量超过5%时,烤燃弹端盖及炸药装药喷出,炸药结构完整,不出现燃烧状态。
关键词HMX基含Al炸药(HAE)装药     快速烤燃     压力膜     空心玻璃微球     响应    
Response Characteristics of HAE Charge with Different Sealing Condition and Coating Layer in Fast Cook-off
LI Liang-liang , SHEN Fei , QU Ke-peng , WANG Hui , XIAO Wei     
Xi′ an Modern Chemistry Research Institute, Xi′ an 710065, China
Abstract: To evaluate the vulnerability of explosive charge, a roast bomb structure with different sealing conditions (state 1:the end cover is 2 steel plugs and 2 pressure membranes.state 2:the end cover is 4 pressure membranes) and thermal conductivity of coating layer (state 3:the end cover is 4 pressure membranes, hollow glass microspheres (HGMs) partially instead of the silicone rubber in the coating layer) was designed.The response characteristics of octogen (HMX)-based aluminized explosive (HAE) under the condition of external fire with liquid fuel were studied.Results show that the pressure membrane of end cover and HGMs coating layer can achieve the purpose of reducing the vulnerability of explosive charge.The effect of pressure relief area and thermal conductivity of coating layer on the fast cook-off characteristics of explosive charge is different.The response level of roast bomb of decreasing the thermal conductivity of coating layer (projectile body is complete, charge and end cover sprayed, and the charge is not steady combustion) is lower than that of roast bomb with the change of sealing conditions (projectile body is complete, the charge is steady combustion).When the ratio of pressure relief area to the surface area of HAE charge is greater than 0.015, the explosive charge reveals in steady combustion state.When the content of the HGMs exceeds 5%, the end cover of roast bomb and explosive charge are sprayed out, and the structure of the explosive charge is integrated and the combustion state does not occur.
Key words: HMX-based aluminized explosive (HAE charge)    fast cook-off    pressure membrane    hollow glass microsphres (HGMs)    response    
1 引言

炸药装药的易损性是火炸药研究的重点和难点之一。易损性的评价方法较多,其中快速烤燃(外部火烧)试验是评估战斗部装药易损性的重要方法之一。关于炸药装药的快速烤燃试验研究国内外已有诸多报道,如美国Witherell等[1]对30 mm口径的炮用燃烧弹进行了快烤试验。由于试验时药量大、成本高等因素限制,国外逐渐采用数值仿真进行模拟,如Aydemir等[2-7]对不同加载条件下的实验过程进行了数值仿真,获得了一些无法通过实验获得的瞬时温度分布、点火时间、点火位置及炸药点火的融化时间等参数。

我国在炸药装药易损性方面的研究起步较晚,在借鉴国外评估标准的基础上,已建立多种快速烤燃试验方法。张旭等[8]采用推进剂的燃烧火焰作为加载源,对2 mm厚钢壳约束的三氨基三硝基苯(TATB)基高聚物黏结炸药(PBX)炸药进行了小尺寸的快速烤燃(药柱尺寸Φ50 mm×100 mm)。程波等[9]采用快烤试验研究了不同约束强度对单质炸药2,6二氨基-3,5二硝基吡啶-1-氧化物(ANPyO,23 g)安全性的影响。徐双培[10]、智小琦[11]、安强等[12]分别研究了密封性、密封结构、装药密度对钝化黑索今(RDX)基装药快烤实验的影响,但以上试验中所用装药量约20 g,所获得的试验结果与真实装药的响应特性存在差距。基于此,陈科全[13]、孙培培等[14]将装药量提高到300 g量级以上,考察了厚壳体强约束下装药的快速烤燃特性。单质炸药HMX能量高于RDX,HMX基含Al炸药(HAE)已得到广泛的研究,但关于HAE炸药装药的快速烤燃特性报道较少。

上述文献从不同角度研究了炸药装药在快速烤燃条件下的安全性,但其实验的药量较小(克级),而实际中战斗部装药量均在几十千克以上,存在尺度效应,并且实际战斗部装药在快速烤燃时出现温度梯度(装药中心部位的温度低于靠近壳体壁面附近的装药温度),在接近壳体附近发生反应,而药量较小时难以出现此种温度梯度,上述实验可看做模拟装药接近壳体的反应层;同时,研究中试样的前端均为平面结构,而实际装药前端非平面结构;并且包覆层导热系数对快速烤燃实验的研究报道也较少。因此,本研究从端盖密封条件以及包覆层导热系数调节角度出发,选取HMX基含Al炸药(HAE)装药,采用头部半球型和尾部圆柱形结合的结构,模拟真实战斗部装药结构;利用压力膜调节端盖密封条件,用空心玻璃微球(HGMs)调节包覆层的导热系数,研究了快速烤燃条件下炸药装药的响应特性,为战斗部炸药装药的不敏感设计及安全性测试提供支撑。

2 实验部分 2.1 烤燃弹设计

烤燃弹由壳体、端盖、包覆层及炸药装药组成,其组成如图 1所示。壳体头部为半球形,另一端为圆柱状,尺寸为Φ130 mm×190 mm,壁厚5 mm,Q235钢材质;端盖上均匀分布四个泄压孔,直径为Φ25 mm;泄压孔采用压力膜和钢堵头结构进行封堵,实际使用时可依据实验安排采用不同材料灵活进行封堵。

图 1 烤燃弹及其端盖示意图 Fig.1 Schematic diagrams of roast bomb and its cover

HAE炸药由压装工艺制成,密度为1.85 g·cm-3。炸药装药可分为两部分,前段为半球形,直径为Φ114 mm;后端为圆柱形,尺寸为Φ114 mm×110 mm,整体装药量2.8 kg。

壳体与炸药装药中间部位为包覆层,厚度为3 mm,硅橡胶材质,实验中以空心玻璃微球代替硅橡胶,调节包覆层的导热系数。所用的空心玻璃微球(hollow glass microspheres,HGMs):型号D -1210,粒度10~125 μm,山东淄博德润机电设备制造有限公司空心玻璃微珠研究所。

本实验中装药质量及结构等参量均确定,通过调整密封条件和包覆层的导热系数,研究其对烤燃弹快速烤燃的影响。包覆层(硅橡胶)尺寸一定时,1#烤燃弹状态为:2个压力膜、2个钢堵头(泄压面积为装药表面积的0.015);2#烤燃弹状态为:4个压力膜(泄压面积为装药表面积的0.03;在密封条件(4个压力膜封堵)一定时,3#烤燃弹状态为:5%(质量分数)的空心玻璃微球代替硅橡胶;4#烤燃弹状态为:10%(质量分数)的空心玻璃微球代替硅橡胶。

2.2 实验布局

快烤实验系统主要由烤燃弹、加热箱、支架、监控系统、测温系统与监控录像终端等部分组成,如图 2所示。

图 2 快烤实验系统示意图 Fig.2 Schematic diagram of the cook⁃off experiment system

将支架置于快速加热箱中部上方,加热箱内倒入50 mm厚的水层,再倒入厚度35 mm的航空燃油,用铁丝悬挂并固定烤燃弹,壳体下表面最低点至液面距离为450 mm;在烤燃弹壳体表面布置2个热电偶,将其与温度记录仪连接并保持正常工作。通过全程实时摄像对实验过程的现象进行观察记录,结合试验获取的相关温度数据,分析评价反应的严重程度。

3 结果与讨论 3.1 端盖密封条件的影响

采用1#和2#烤燃弹考察端盖密封条件对炸药装药易损性的影响,结果见表 1t1为开始点火到压力膜冲破的时间,t2为开始点火到开始燃烧之前的时间(耐烤燃时间),t3为开始点火到燃烧结束的时间。

表 1 端盖密封条件及实验结果 Tab.1 The sealing conditions of end cover and experimen⁃ tal results

表 1可以看出:1#烤燃弹与2#烤燃弹开始点火到压力膜冲破的时间(t1)基本一致,分析原因可能是,快速烤燃时,壳体附近的炸药表面产生热量积累,在密度间断处形成热点,热点附近的炸药晶粒发生快速的化学反应(热分解),生成气体,气体对压力膜作用,待气体压力达到压力膜的断裂强度时,压力膜破裂,因装药质量及其结构相同,热刺激后反应产生同量气体,故气体达到相同的压力(压力膜的破坏强度)时,所需要的时间(t1)基本一致;1#烤燃弹的耐烤燃时间(t2)滞后于2#烤燃弹,分析原因可能是,压力膜破损之后,因阻挡作用不同,外界的物质流对炸药的热辐射及热传导不同,导致炸药点火燃烧的时刻不同,1#烤燃弹允许物质流进入的面积小于2#烤燃弹,相同时间进入1#烤燃弹内的高温物质流小于2#烤燃弹,因此1#烤燃弹的耐烤燃时间(t2)滞后于2#烤燃弹;1#烤燃弹开始点火至燃烧结束时间(t3)滞后于2#烤燃弹,分析原因可能是,压力膜破碎后,1#烤燃弹端盖上允许外界高温物质流进入弹体内部的面积小于2#烤燃弹,导致高温物质流对1#烤燃弹内装药的加热、引燃效果小于2#,因此1#烤燃弹内装药的燃烧速度小于2#烤燃弹,所以1#烤燃弹开始点火至燃烧结束时间(t3)滞后于2#烤燃弹。

两种烤燃弹在不同时刻的照片如图 3所示。实验前后弹体端盖状态亦置入图 3

图 3 1#和2#烤燃弹在不同时刻的快烤状态 Fig.3 The fast cook⁃off states of roast bombs 1# and 2# at different times

图 3可以看出,从实验开始至装药开始点火前,1#烤燃弹(0、4.08 min)和2#烤燃弹(0、4.07 min)无明显差别;压力膜破损后装药发生点火燃烧时,1#烤燃弹(5.18 min)基本无破碎炸药喷出,而2(# 5.07 min)有破碎炸药喷出;在燃烧过程中1#烤燃弹(6 min)有少量破碎炸药喷出,而2#烤燃弹(6 min)为大量破碎炸药喷出。分析原因可能是因为2#烤燃弹比1#增加了2个压力膜,压力膜破碎后,2#烤燃弹内进入的高温物质流远远多于1#,导致2#烤燃弹内装药的燃烧更加剧烈,燃烧产物往弹体外“喷射”时携带的未反应装药碎块多于1#

图 3还可看出,相比于实验前的弹体(before exp.),回收后的1#烤燃弹(after exp.)和2#烤燃弹(after exp.)均结构完整,端盖未发生变形,仅压力膜破损,压力膜开口边缘为燃烧后的固体物质,从侧面印证两种状态的装药在快速加热条件下仅发生燃烧反应。

综上,端盖密封状态不同时,HAE装药均发生燃烧反应,弹体结构完整,端盖的密封状态主要影响装药燃烧的持续时间。

3.2 包覆层导热系数的影响

用HGMs替代包覆层中的硅橡胶,可以不同程度地降低包覆层的导热系数,以此研究包覆层导热系数对快速烤燃结果的影响。对3#和4#烤燃弹进行实验,结果表明包覆层中添加HGMs后,烤燃弹的快速烤燃响应特性与HGMs含量表观上关系不大,即烤燃弹只表现压力膜的破损和端盖的喷出,并伴随炸药装药的喷出,两种烤燃弹均无装药的燃烧过程;3#烤燃弹的压力膜破损时间(t1=5.78 min)少于4#烤燃弹的时间(t1=5.72 min),可见HGMs含量增加,烤燃弹的压力膜破损时间延迟。

将3#和4#烤燃弹的结果与表 1中未添加HGMs的2#烤燃弹进行比较,发现添加HGMs烤燃弹(3#和4#)的t1大于未添加HGMs的烤燃弹(2#),分析原因可能为,添加HGMs后大大降低了包覆层的导热系数,有效延迟了热量的传递,即单位时间内传递给装药的热量减少,导致添加HGMs烤燃弹的t1时间延长。而HGMs独特的结构,赋予包覆层在热刺激下具有强大的体积变形,所产生的膨胀力将端盖及其装药整体喷出,故添加HGMs的烤燃弹均不存在装药的稳定燃烧过程。

3#烤燃弹和4#烤燃弹在不同时刻的照片如图 4所示。实验前后弹体端盖状态亦置入图 4

图 4 3#和4#烤燃弹在不同时刻的快烤状态 Fig.4 The fast cook-off states of roast bombs 3# and 4# at different times

图 4可以看出,从实验开始至端盖喷出前,3#烤燃弹(0 min)和4#烤燃弹(0 min)无明显差别;压力膜破损时,3#烤燃弹(5.78 min)和4#烤燃弹(5.72 min)的端盖均喷出。结合实验前后的弹体变形情况(图 4中的before Exp.和after Exp.)可知,包覆层添加HGMs的烤燃弹端盖均发生变形,且端盖中间部位凸起,同时,3#燃烧弹有1个压力膜破损,4#燃烧弹的压力膜全部破损,且破损的压力膜表面光滑,无燃烧产物痕迹,回收弹体的内腔可见部分残留包覆层,未见大面积燃烧痕迹。分析原因可能是因为HGMs具有独特的结构,内部含有气体,使HGMs赋予包覆层基体强大的体积变形能力,尤其在热刺激作用下具有优异的体积膨胀能力,体积膨胀力较大,而壳体及装药在热刺激作用下可视为体积不变,对硅橡胶层进行刚性约束,最终在包覆层的膨胀力及其炸药装药的热分解产物高温、高压等多重载荷作用下,最薄弱的压力膜及其后盖板喷出,并将硅橡胶层及炸药装药带出,表现为现场可见的大量片状包覆层,且炸药(包括头部半球形和尾部圆柱形)基本完整,尺寸略有减小,仅有少量炸药成小颗粒状。

相比未添加HGMs的烤燃弹(1#与2#),添加HGMs(3#与4#)后,烤燃弹壳体未发生破损,仅端盖及装药喷出,装药未发生可见的稳定燃烧,说明添加HGMs后,HAE装药的快速烤燃响应程度减弱。

4 结论

(1)采用压力膜和钢堵头对泄压孔进行封堵,改变端盖的密封条件,HAE装药在快速烤燃实验中均稳定燃烧,壳体完整,泄压面积主要影响装药的耐烤燃时间及燃烧持续时间;随着泄压面积/装药表面积的比值减小,其t2和燃烧持续时间(t3-t2)相应延长。

(2)HGMs部分取代硅橡胶后,表观上对烤燃弹的实验结果影响不大,烤燃弹在实验中均弹体完整,端盖和装药喷出,无装药的稳定燃烧,加入HGMs后包覆层的导热系数降低,主要改变压力膜的破损时间。

(3)相比于密封条件,HGMs加入包覆层后的烤燃弹,其快速烤燃响应的剧烈程度降低。

参考文献
[1]
Witherell M, Pflegl G. Prediction of propellant and explosive cook-off for the 30 mm HEI-T and raufoss MPLD-T rounds chambered in a hot MK44 Barrel(advanced amphibious assault vehicle-AAAV). ADA 388280[R]. 2001.
[2]
Erdogan Aydemir, Abdullah Ulas. A numerical study on the thermal initiation of a confined explosive in 2-D geometry[J]. Journal of Hazardous Materials, 2011, 186(1): 396-400. DOI:10.1016/j.jhazmat.2010.11.015
[3]
Daniel O. Asante, Shinhyuk Kim Jooseung Chae, et al. CFD cook-off simulation and thermal decomposition of confined high energetic material[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 699-705. DOI:10.1002/prep.v40.5
[4]
Matthew L.Gross, Trevor D. Meredith.Considerations for fast cook-off simulations[J]. Propellants Explosives Pyrotechnics, 2016, 41(6): 1036-1043. DOI:10.1002/prep.v41.6
[5]
Hakan Sahin, Bekir Narin, D.Funda Kurtulus. Development of a design methodology against fast cook-off threat for insensitive munitions[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 580-587. DOI:10.1002/prep.201500333
[6]
Amer HAMEED, Mathew AZAVEDO, Philip PITCHER. Experimental investigation of a cook-off temperature in a hot barrel[J]. Journal of Defence Technology, 2014, 10(2): 86-91. DOI:10.1016/j.dt.2014.05.006
[7]
Matthew L, Gross Karl V, Meredith Merrill W. Beckstead. Fast cook-off modeling of HMX[J]. Journal of Combustion and Flame, 2015, 162(9): 3307-3315. DOI:10.1016/j.combustflame.2015.05.020
[8]
张旭, 谷岩, 张远平, 等. TATB基PBX的快速烤燃实验与数值模拟[J]. 含能材料, 2010, 18(5): 551-557.
ZHANG Xu, GU Yan, ZHANG Yuan-ping, et al. Numerical simulation and experimental study of fast cook-off of TATB-based PBX explosive[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2010, 18(5): 551-557.
[9]
程波, 李文彬, 郑宇, 等. 不同约束条件下ANPyO炸药快烤试验研究[J]. 爆破器材, 2013, 42(5): 53-56.
CHENG Bo, LI Wen-bin, ZHENG Yu, et al. Study on ANPyO explosive in fast cook-off test under different constraint conditions[J]. Explosive Materials, 2013, 42(5): 53-56.
[10]
徐双培, 胡双启, 王冬青, 等. 壳体密封性对小尺寸弹药快速烤燃响应规律的影响[J]. 火炸药学报, 2009, 32(3): 35-37.
XU Shuang-pei, HU Shuang-qi, WANG Dong-qing, et al. Effect of shell sealing on the response of small scale ammunition in fast cook-off test[J]. Chinese Journal of Explosives and Propellants, 2009, 32(3): 35-37.
[11]
智小琦, 胡双启, 肖志华, 等. 密封条件对钝化RDX快速烤燃响应特性的影响[J]. 火炸药学报, 2010, 33(1): 31-33, 37.
ZHI Xiao-qi, HU Shuang-qi, XIAO Zhi-hua, et al. Effect of sealing conditions on fast cook-off response properties of passive RDX[J]. Chinese Journal of Explosives and Propellants, 2010, 33(1): 31-33, 37.
[12]
安强, 胡双启. 装药密度对钝化黑索今快速烤燃特性的影响[J]. 四川兵工学报, 2010, 31(10): 64-66.
AN Qiang, HU Shuang-qi. Effect of density of charge on fast cook-off response properties of passive RDX[J]. Journal of Sichuan Ordnance, 2010, 31(10): 64-66. DOI:10.3969/j.issn.1006-0707.2010.10.019
[13]
陈科全, 黄亨建, 路中华, 等. 强约束下典型熔铸和浇注炸药的烤燃特性对比[J]. 四川兵工学报, 2015, 36(1): 133-136.
CHEN Ke-quan, HUANG Heng-jian, LU Zhong-hua, et al. Experimental study on cook-off test for Melt-Cast and Cast-Cured explosive at strong constrain[J]. Journal of Sichuan Ordnance, 2015, 36(1): 133-136.
[14]
孙培培, 南海, 牛余雷, 等. 壳体厚度对TNT炸药快速烤燃响应的影响[J]. 含能材料, 2011, 19(4): 532-435.
SUN Pei-pei, NAN Hai, NIU Yu-lei, et al. Effect of shell thickness on response level of confined TNT in fast cook-off[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(4): 532-435.
图文摘要

The response characteristics of HMX‐based aluminized ex‐ plosive(HAE)with different pressure relief area and the heat‐insulation coefficient of coating layer under the condi‐ tion of external fire were studied.