文章快速检索     高级检索
  含能材料  2018, Vol. 26 Issue (9): 779-785.  DOI: 10.11943/CJEM2017371
0

引用本文  

张伟斌, 田勇, 雍炼, 等. TATB造型颗粒温等静压成型X射线微层析成像[J]. 含能材料, 2018, 26(9): 779-785. DOI: 10.11943/CJEM2017371.
ZHANG Wei-bin, TIAN Yong, YONG Lian, et al. X-ray Microtomography of TATB Granules Under Isostatic Warm Compaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(9): 779-785. DOI: 10.11943/CJEM2017371.

基金项目

国家自然科学基金(11572294), 国家自然科学基金NSAF重点基金(U1330202)

作者简介

张伟斌(1972-),男,研究员,研究方向为先进材料与工程无损评价、CT应用技术、凝聚态物理等。e-mail:weibinzhang@caep.cn

文章历史

收稿日期:2017-11-29
修回日期:2018-03-08
网络出版:2018-06-29
TATB造型颗粒温等静压成型X射线微层析成像
张伟斌 , 田勇 , 雍炼 , 杨雪海 , 戴斌 , 李敬明 , 陈华     
中国工程物理研究院化工材料研究所,四川 绵阳 621999
摘要:与传统钢模成型相比,温等静压成型是一种获得致密、均匀高聚物粘结炸药的更优方法,为温等静压成型高聚物粘结炸药精密物理性能研究提供细观结构基础,利用X射线微层析成像技术研究了三氨基三硝基苯(TATB)造型颗粒经温等静压成型圆柱样品的三维细观结构。结果显示,TATB造型颗粒经过温压后仍保留完整,典型形态呈多边体,压实颗粒间有高密度薄层、颗粒接触数最大达到12。CT图像分析表明,压实颗粒尺寸轴向分布保持不变,径向存在沿轴心方向的密度降和压力降;层面密度离散性高于1.15%,但体密度趋向均匀;分析内部力链分布情况,发现了温等静压成型过程TATB造型颗粒呈现等向压缩特征;基于细观颗粒接触角统计了颗粒接触数,证实了压实颗粒构形态及其排列趋向各向同性,但局部颗粒仍存在剪切压缩状态。
关键词三氨基三硝基苯(TATB)造型颗粒     温等静压     微细结构     X射线微层析成像    
X-ray Microtomography of TATB Granules Under Isostatic Warm Compaction
ZHANG Wei-bin , TIAN Yong , YONG Lian , YANG Xue-hai , DAI Bin , LI Jing-ming , CHEN Hua     
Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China
Abstract: Compared with the traditional die pressing, the isostatic warm compaction is a better way to obtain dense and homogeneous polymer bonded explosive(PBX). To provide a meso-level structure basis for the study of precise physical properties of PBX, three dimensional mesoscopic structure of the cylindrical sample formed by 2, 4, 6-triamino-1, 3, 5-trinitrobenzene(TATB) granules under isostatic warm pressing was studied by X-ray microtomography(X-μCT). The results reveal that TATB granules are still intact after warm pressing, and typically have polyhedral morphologies. There are high density layers between neighboring granules, and the maximum contact number of which is 12. An analysis of CT images shows that the axial size distributions of the compacted granules remain unchanged, whereas a decreasing trend of the radial density and pressure along the axial direction is observed. The CT values dispersion of different slices is larger than 1.15%, but the bulk density tends to be homogeneous. By analyzing the internal force chain distribution, we found an isotropic compression characteristic of compacted TATB granules under isostatic warm compaction. The particle contact number is counted based on mesoscopic particle contact angle, from which the morphology and arrangement of compacted particles have been confirmed to be isotropic, while the local particles subjected to shear-compression loading could also be detected.
Key words: TATB granules    isostatic    fine structures    X-ray microtomography    
1 引言

三氨基三硝基苯(TATB)是目前安全性能最好的钝感炸药,它常以TATB粉末晶体为基经水悬浮法造粒成TATB颗粒,再经温压成高聚物粘结炸药(Polymer bonded explosive,PBX)样品,一般具有密度均匀性较高、爆轰精密度较高和承载能力较高等优点,在国内外得到高度关注和研究。

温等静压成型是PBX温压成型方式的一种,它是在一定温度和压力下对液体介质施加压力,通过液体介质均匀挤压其中的炸药颗粒使其均匀受力,它的最大特点是能获得致密、均匀的PBX样品,且研究表明同批TATB造型颗粒温等静压成型样品较温压钢模成型样品的宏观内部质量、力学性能有明显改善[1-3],虽采用扫描电镜、光学显微镜等方法对成型样品破坏性切片进行了观察与研究[4-5],但对温等静压成型性能改善的结构基础仍未深入认识。

X射线层析成像(X-ray computed tomography,XCT)技术是能无损侵入材料内部获得三维结构信息的有力工具[6-9],而X射线微层析成像(X-ray microtomography,X-μCT)结构空间分辨力达到微米尺度甚至更优[10-13],在先进材料研究中得到广泛应用[14-19],是目前研究材料内部三维微细结构的最佳无损技术。

本工作利用X-μCT技术无损研究TATB颗粒经温等静压成型PBX三维微细结构特征,分析压制后颗粒密堆形态、颗粒接触数、尺寸分布、界面特性、微杂质分布等,探讨PBX微细结构对层面密度分布的影响,为研究温等静压成型PBX精密物理性能提供细观结构基础。

2 实验与方法 2.1 TATB颗粒温等静压成型

TATB粉末晶体经水悬浮法造粒呈颗粒状(TATB造型颗粒),颗粒直径一般为1~3 mm(图 1a)。TATB造型颗粒经温等静压压制(图 1b),压制温度为85 ℃,压制压力为90 MPa,成型后样品尺寸为Φ31 mm × 130 mm(长径比大于4),样品在室温中放置较长时间充分释放残余应力后进行X-μCT扫描成像。

图 1 温等静压PBX成型示意图 Fig .1 Schematic diagrams of PBX during warm isostatic pressing
2.2 X-μCT扫描方法

X-μCT扫描时,考虑等静压力特征其成型样品仅扫描一半高,主要条件为管电压80 kV,管电流480 μA,0.5 mm Cu片滤射线,探测器采集时间2000 ms,样品分辨体元为58 μm,样品在旋转平台上旋转360°且每转0.1°就得到一幅基于X射线吸收的图像,最后温压成型炸药样品的三维结构图像就由这3600幅的射线图像重建得到,如图 1c所示。

2.3 颗粒接触模型分析方法

TATB颗粒体系温等静压成型颗粒接触模型分析方法如图 2所示。其中,TATB颗粒PI包括{xInIHICI},xI是颗粒PI质心的坐标,nI为颗粒方向,HI为颗粒的边界,CI={C1IC2IC3IC4IC5I}为颗粒接触点的集合。设两颗粒之间最多只能有一个点接触(初始状态)或一个边接触(压力状态),根据颗粒与邻近颗粒的关系,可得到作用在某一特定颗粒上的一组力,由这一组力可得出它们平衡时的合力与合力矩。

图 2 TATB颗粒体系温等静压成型颗粒接触模型示意图 Fig .2 Particle contact model of TATB granules during warm isostatic pressing
2.4 CT图像分析方法 2.4.1 CT灰度值阈值分割法

CT图像处理前,先经过滤波窗口进行滤值去噪,然后利用CT三维图像的灰度直方图,使感兴趣物质目标和最大灰度值之间的动态特性确定感兴趣物质图像的最佳分离阈值,从而得到感兴趣物质目标的三维分割结果。

2.4.2 CT灰度值分布曲线分析法

CT图像中,沿任意分析测量方向直线经过点的CT灰度值绘制在坐标图上会形成CT灰度值分布曲线。由于物质结构的不均匀,该CT灰度值曲线会形成一些边缘陡峭的波峰或波谷,在波峰/波谷高度一半的位置可分析测量物质结构的结构尺寸。

3 结果与讨论 3.1 CT成像结果 3.1.1 压实颗粒密堆形态

图 3给出TATB造型颗粒经温等静压成型的PBX微细结构的典型CT切片图(a为轴向切片,b为径向切片,c为3D重构),图中一个环形凸起结构为一个压实后颗粒。由图 3可明显看出:TATB颗粒经温压成型后压实颗粒仍保留完整形态并致密堆积,压实颗粒内部及其之间未发现残余孔隙、细小裂纹,压实颗粒尺寸大小轴向分布随机,压实颗粒堆积形态轴向CT切片与径向CT切片大部分呈多边形,压实颗粒无明显取向。

图 3 PBX成型样品截面微细结构CT图像 Fig .3 Fine structure of the pressed PBX sample visualized by CT slices
3.1.2 压实颗粒接触数

图 4给出了图 3b中径向任意选取局部区域的小颗粒与大颗粒、小颗粒之间和大颗粒之间的颗粒接触情况(亦称颗粒级配),发现颗粒级配呈现小颗粒之间级配数4~5、大颗粒之间级配数5~8(大颗粒之间填充小颗粒)、小颗粒级配大颗粒数8~12的趋势,其中尤以8~12级配数的比例居多,典型堆积模式有小颗粒嵌入大颗粒、小颗粒包裹大颗粒、等颗粒排列等。

图 4 PBX压实颗粒接触数CT图像(反相) Fig .4 Contact numbers of the PBX compacted granules counted from CT inverse images

对比图 3a图 3b,发现纵向颗粒接触情况与径向接触情况的趋势相同,颗粒级配数最大亦为12。结果说明等静压力在轴向与径向对TATB颗粒作用的总体挤压效果基本相同,使得颗粒压实后无明显取向并呈多边体特征。但仍能发现部分压实颗粒形态呈非严格多边体,可能原因是TATB造型颗粒非均质结构的多样性、复杂性[20-21]造成。

3.1.3 压实颗粒界面

图 3可看出压实颗粒间有明显的高密度界面薄层。分析CT图像中的CT灰度值分布曲线特性,与文献[20]相同,压实颗粒与高密度界面层有明显的CT灰度值曲线分布的波峰和波谷特征,且波谷半高宽与颗粒尺寸相当,波峰半高宽则与高密度界面薄层厚度相当,高密度界面层厚度随机分布,范围约100~ 300 μm。该高密度界面层的形成原因主要是由于TATB造型颗粒存在致密外层[21-22],在成型温度、成型压力作用下软化、挤压进一步致密而形成(图 5),并呈网格化分布特征。

图 5 压缩导致TATB颗粒表面致密层 Fig .5 Dense layer located the surface of TATB granules in‑ duced by compression
3.1.4 高密度

利用CT灰度值阈值分割图 3c的物质相,得到成型样品内部存在相对于TATB颗粒密度较高的不纯物(High density impurity,HDI)结果如图 6所示。由图 6明显看出,典型异质三维形态呈“凸形”(局部放大),轴向尺寸大于径向尺寸(High / Director >1)。

图 6 高密度不纯物 Fig .6 High density impurity(HDI)
3.1.5 成型特征

表 1列出了利用X-μCT图像分析得出的TATB造型颗粒成型后压实颗粒的密堆积形态、尺寸分布、界面特性、微杂质(异质)分布等特征,结果表明:X-μCT可三维显示、无损分析TATB颗粒经过温等静压后的微细结构特征;TATB颗粒经温等静压后仍保留完整,典型压实形态呈多边体,压实颗粒间有高密度薄层,未发现残余孔隙和细小裂纹,压实颗粒接触数最大达到12,压实颗粒尺寸轴向分布保持不变;TATB颗粒温等静压成型微细结构最大特点是压实颗粒三维形态及其微细尺度的密堆积趋向各向相同。

表 1 样品压实结构特征 Table1 Structural characteristic of the compacted PBX
3.2 CT尺度结构特性 3.2.1 颗粒压实尺寸分布

利用压实颗粒CT灰度值曲线分布的峰值特征,统计了切片数从100到900且间隔100切片的各切片面中的颗粒尺寸分布,结果如图 7所示。由图 7可见,各层面压实颗粒尺寸分布特征基本相同,说明压实颗粒尺寸分布轴向无明显变化。

图 7 压实颗粒尺寸分布 Fig .7 Size distribution of the compacted granules

统计径向CT切片的压实颗粒分布发现,靠近模具较小尺寸颗粒面积分数偏大、靠近样品轴心则较大尺寸颗粒面积分数偏大。假设温压成型前的TATB松装颗粒体系各向颗粒统计平均尺寸均等、一致,则压制后各向颗粒统计平均尺寸越小其所受的压力越大,那么颗粒尺寸分布结果说明了成型过程中轴向压力基本相同,径向压力则存在向轴心方向的压力降。

3.2.2 层面密度离散性

根据CT基本原理,在X射线能量一定条件下,某物质密度与CT灰度值存在:

$ \rho = k \cdot \left( {CT + N} \right) $ (1)

式中,k为与某物质原子序数有关的常数,N为常数。

此外,大量试验表明炸药密度与CT灰度值的线性关系较理想(线性相关系数R>0.99)[23-25]。因此,根据式(1)成型后层面密度的离散性可表示为:

$ m = {\rho _{{\rm{std}}}}/{\rho _{{\rm{mean}}}} = C{T_{{\rm{std}}}}/C{T_{{\rm{mean}}}} $ (2)

式中,ρmeanρstd为层面密度的平均值与标准偏差,CTmeanCTstd为层面CT灰度值的平均值与标准偏差。

图 8给出了样品切片数为100、300、500、700、900的层面CT灰度值分布及切片数100~900的平均CT灰度值分布结果,表 2给出切片数100~900且间隔50切片的各切片CT灰度值平均值及CT灰度值标准偏差。

图 8 样品不同切片的CT灰度值分布及100~900切片的平均CT灰度值分布 Fig .8 The CT grey distribution of the different slices and the average CT grey distribution of the 100-900 slices of the sample
表 2 切片CT灰度值平均值、标准偏差值及密度离散性 Table2 Mean values and its standard deviation of CT grey values in slice

根据式(2)及表 2可知,单切片层面密度由于高颗粒界面原因存在密度离散性,密度离散性大于1.15%,PBX层面密度离散性与温等静压成型前TATB颗粒内外层密度差基本一致[20-21];但各层面网格化结构的整体层面密度趋于均匀,密度离散性小于0.50%。结果说明在温等静压成型样品长径比大于4的情况下其整体层面密度分布仍保持高均匀性。图 8显示出不论各层面还是整体层面,靠近模具区域CT灰度值(密度)高于轴心区域的CT灰度值(密度),存在沿轴心方向的密度降现象。

3.2.3 颗粒压力链分布

根据颗粒接触模型分析方法,从CT尺度的细观颗粒角度出发,可以定义颗粒接触角为相互挤压后的两个颗粒的中心连线与主压应力作用夹角为α(如图 4e示意),在此基础上统计沿不同颗粒接触挤压的数量(颗粒接触数)为Nα)。如Nα)可用圆拟合,表明等向压缩,表示颗粒各项同性的性质;如Nα)不能用圆拟合,则表明存在剪切状态,表示颗粒各项异性显著。

根据牛顿第三定律,可用连线连接图 3a中压实颗粒中心与其接触颗粒中心,则可表示出TATB颗粒温等静压成型时的内部力链分布情况(如图 9所示)。由图 9可见,TATB颗粒温等静压成型过程,颗粒之间的挤压力呈均匀分布,宏观上趋向等向压缩特征。如图 4a图 4b图 4c图 4e所示局部的颗粒Nα)可近似圆拟合,说明这些颗粒表现为等向压缩,颗粒所受的主应力相当。但图 4d所示局部的某颗粒Nα)为明显的非圆拟合状态,说明该颗粒存在明显的剪切压缩状态。

图 9 TATB成型时的力链结构 Fig .9 Force chain structure formed in the compacting pro‑ cess of TATB granules
4 结论

(1)TATB颗粒经温等静压后仍保留完整,典型压实形态呈多边体,压实颗粒间有高密度薄层,未发现残余孔隙和细小裂纹,压实颗粒接触数最大达到12。

(2)压实颗粒尺寸轴向分布保持不变,径向存在沿轴心方向的密度降和压力降;层面密度离散性高于1.15%,但体密度趋向均匀;压缩过程趋向等向压缩,压实颗粒构形态及其排列趋向各向同性,但局部颗粒仍存在剪切压缩状态。

(3)X-μCT可三维显示、无损分析TATB颗粒经过温等静压后的微细结构特征,为TATB基PBX的结构与性能关联、结构与性能演化等基础研究提供一种先进的无损评价手段。

参考文献
[1]
温茂萍, 庞海燕, 敬仕明, 等. 等静压与模压JOB-9003炸药力学性能比较研究[J]. 含能材料, 2004, 12(6): 338-341.
WEN Mao-ping, PANG Hai-yan, JING Shi-ming, et al. Comparative study on mechanical properties of two kinds of JOB-9003 shaped seperately by isostatic liquid pressing and mould pressing[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2004, 12(6): 338-341. DOI:10.3969/j.issn.1006-9941.2004.06.005
[2]
舒远杰, 王新锋, 谢惠民, 等. 结晶特性与制造工艺对炸药件力学性能的影响[J]. 实验力学, 2006, 21(2): 165-170.
SHU Yuan-jie, WANG Xin-feng, XIE Hui-min, et al. The effect of crystal characteristics and manufacturing processes on the mechanical properties of composite explosive[J]. Journal of Experimental Mechanics, 2006, 21(2): 165-170. DOI:10.3969/j.issn.1001-4888.2006.02.008
[3]
周红萍, 何强, 李明, 等. 低拉伸应力下PBX的老化实验研究[J]. 火炸药学报, 2009, 32(5): 8-10.
ZHOU Hong-ping, HE Qiang, LI Ming, et al. Experimental study on aging of PBX under low tensile stress[J]. Chinese Journal of Explosives & Propellants, 2009, 32(5): 8-10. DOI:10.3969/j.issn.1007-7812.2009.05.003
[4]
温茂萍, 李明, 庞海燕, 等. 炸药件力学性能各向同异性试验研究[J]. 含能材料, 2006, 14(4): 286-289.
WEN Mao-ping, LI Ming, PANG Hai-yan, et al. Study on mechani-cal isotropic of PBX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2006, 14(4): 286-289. DOI:10.3969/j.issn.1006-9941.2006.04.013
[5]
兰琼, 韩超, 雍炼, 等. 低压热处理对PBX炸药件密度及内部质量的影响[J]. 含能材料, 2008, 16(2): 185-187.
LIAN Qiong, HAN Chao, YONG Lian, et al. Effects of low-pressure heat treatment on charge density and inner quality of PBX[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(2): 185-187. DOI:10.3969/j.issn.1006-9941.2008.02.017
[6]
Ying-Chieh Chen, Joseph B, Geddes III, Leilei Yin, et al. X-ray computed tomography of holographically fabricated three-dimensional photonic crystals[J]. Adv Mater, 2012, 24: 2863-2868. DOI:10.1002/adma.v24.21
[7]
William K, Epting, Jeff Gelb, Shawn Litster. Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer-scale X-ray computed tomography[J]. Adv Funct Mater, 2012, 22: 555-560. DOI:10.1002/adfm.201101525
[8]
Brian M, Patterson, Kevin Henderson, Zachary Smith. Measure of morphological and performance properties in polymeric silicone foams by X-ray tomography[J]. J Mater Sci, 2013, 48: 1986-1996. DOI:10.1007/s10853-012-6965-2
[9]
Lucien Laiarinandrasana, Thilo F, Morgeneyer, Henry Proudhon, et al. Effect of multiaxial stress state on morphology and spatial distribution of voids in deformed semicrystalline polymer assessed by X-ray tomography[J]. Macromolecules, 2012, 45: 4658-4668. DOI:10.1021/ma3005247
[10]
Heath A, Barnett, Kyungmin Ham, Jason T. Synchrotron X-ray tomography for 3D chemical distribution measurement of a flameretardant and synergist in a fiberglass-reinforced polymer blend[J]. J Phys Chem B, 2010, 114: 2-9.
[11]
Fabrègue D, Landron C, Bouaziz O, et al. Damage evolution in TWIP and standard austenitic steel by means of 3D X ray tomography[J]. Materials Science & Engineering: A, 2013, 579: 92-98.
[12]
Dadkhah M, Peglow M, Tsotsas E. Characterization of the internal morphology of agglomerates produced in a spray fluidized bed by X-ray tomography[J]. Powder Technology, 2012, 228: 349-358. DOI:10.1016/j.powtec.2012.05.051
[13]
Eric Maire, Suxia Zhou, Jerome Adrien, Marco Dimichiel. Damage quantification in aluminium alloys using in situ tensile tests in X-ray tomography[J]. Engineering Fracture Mechanics, 2011, 78: 2679-2690. DOI:10.1016/j.engfracmech.2011.07.004
[14]
Luc Salvo, Michel Suéry, Ariane Marmottant, et al. 3D imaging in material science:application of X-ray tomography[J]. C R Physique, 2010, 11: 641-649. DOI:10.1016/j.crhy.2010.12.003
[15]
Shuji Noguchi, Ryusuke Kajihara, Yasunori Iwao, et al. Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation[J]. International Journal of Pharmaceutics, 2013, 445: 93-98. DOI:10.1016/j.ijpharm.2013.01.048
[16]
Ruihao Liu, Xianzhen Yin, Haiyan Li, et al. V isualization and quantitative profiling of mixing and segregation of granules using synchrotron radiation X-ray microtomography and three dimensional reconstruction[J]. International Journal of Pharmaceutics, 2013, 445: 125-133. DOI:10.1016/j.ijpharm.2013.02.010
[17]
Yong Guan, Wenjie Li, Yunhui Gong, et al. Analysis of the three-dimensional microstructure of a solid-oxide fuel cell anode using nano X-ray tomography[J]. Journal of Power Sources, 2011, 196: 1915-1919. DOI:10.1016/j.jpowsour.2010.09.059
[18]
Oded Rabin, Manuel Perez J, Jan Grimm, et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles[J]. Nature Materials, 2006, 5: 118-122. DOI:10.1038/nmat1571
[19]
Wenlu Zhu, Glenn A Gaetani, Florian Fusseis, et al. Microtomography of partially molten rocks:three-dimensional melt distribution in mantle peridotite[J]. Science, 2011, 332: 88-91. DOI:10.1126/science.1202221
[20]
张伟斌, 杨雪海, 杨仍才, 等. 单向温模压TATB基高聚物粘结炸药X射线微层析成像[J]. 含能材料, 2014, 22(2): 202-205.
ZHANG Wei-bin, YANG Xue-hai, YANG Reng-cai, et al. X-ray Micro-tomography of TATB based polymer bonded explosives under unidirectional warm die compaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(2): 202-205. DOI:10.3969/j.issn.1006-9941.2014.02.015
[21]
张伟斌, 戴斌, 杨雪海, 等. TATB造型颗粒内部微结构特征[J]. 含能材料, 2013, 21(2): 279-280.
ZHANG Wei-bin, DAI Bin, YANG Xue-hai, et al. Microstructures characterization of TATB-based granules by high resolution x-ray computed tomography[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013, 21(2): 279-280. DOI:10.3969/j.issn.1006-9941.2013.02.027
[22]
张伟斌, 杨雪海, 杨仍才, 等. 流固耦合湍流驱动TATB造粒凝结涡旋[J]. 含能材料, 2014, 22(3): 376-381.
ZHANG Wei-bin, YANG Xue-hai, YANG Reng-cai, et al. Condensed vortexes in TATB granules driven by fluid-solids coupled turbulent flows[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2014, 22: 376-381. DOI:10.3969/j.issn.1006-9941.2014.03.019
[23]
Heismann B J, Leppert J, Stierstorfer K. Density and atomic number measurements with spectral X-ray attenuation method[J]. J Appl Phys, 2003, 94(3): 2073-2079. DOI:10.1063/1.1586963
[24]
杨雪海, 张伟斌, 戴斌, 等. 含能材料密度的XCT自参照测试[J]. 无损检测, 2010, 32(6): 431-433.
YANG Xue-hai, ZHANG Wei-bin, DAI Bin, et al. Self-comparison based X-ray computed tomography for measuring narrow densities of energy material[J]. Nondestructive Testing, 2010, 32(6): 431-433.
[25]
ZHANG Wei-bin, HUANG Hui, TIAN Yong, et al. Characterization of RDX-based thermosetting plastic bonded explosive by cone-beam micro-focus computed tomography[J]. Journal of Energetic Materials, 2012, 30(3): 196-208. DOI:10.1080/07370652.2011.552899
图文摘要

Three dimensional visualization of 2, 4, 6-triamino-1, 3, 5-trinitrobenzene(TATB)molding powder under isostatic warm compaction was performed using X-ray microtomography(X-μCT). It allows a quantitative analysis of the compacted granules,including the size distribution and CT value variance in different slices.