文章快速检索     高级检索
  含能材料  2018, Vol. 26 Issue (9): 753-759.  DOI: 10.11943/CJEM2017389
0

引用本文  

雷建磊, 宁弘历, 胡刚, 等. 双阳离子型咪唑含能盐的合成及性能[J]. 含能材料, 2018, 26(9): 753-759. DOI: 10.11943/CJEM2017389.
LEI Jian-lei, NING Hong-li, HU Gang, et al. Synthesis and Properties of Bis-cationic Imidazolium Energetic Salts[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(9): 753-759. DOI: 10.11943/CJEM2017389.

基金项目

龙山学术人才科研支持项目(17LZX412)

作者简介

雷建磊(1992-),男,硕士研究生,主要从事咪唑类含能材料研究。e-mail:leijianlei92@163.com

通信联系人

杨海君(1976-),男,副教授,主要从事含能材料合成研究。e-mail:65818933@qq.com

文章历史

收稿日期:2017-12-24
修回日期:2018-03-01
网络出版:2018-05-25
双阳离子型咪唑含能盐的合成及性能
雷建磊 , 宁弘历 , 胡刚 , 苏柯 , 杨海君     
西南科技大学材料科学与工程学院,四川 绵阳 621010
摘要:以2-甲基咪唑为原料,二溴甲烷为桥联试剂,经过亚甲基桥联、季铵化、硝化反应得到了双阳离子含能化合物3,3′-亚甲基双(2-甲基-1-硝酰氧乙基咪唑)二硝酸盐,然后通过复分解反应得到一系列分别以苦味酸负离子、二硝酰胺负离子、3,5-二硝基- 1,2,4-三氮唑负离子和5-硝基四唑负离子为阴离子的双阳离子型含能盐。所合成的含能盐经紫外可见光谱(UV-Vis)、红外光谱(IR)、质谱(MS)、核磁共振(NMR)、元素分析和热重分析(TGA)等分析表征。采用Kamlet-Jacobs方程估算了所合成双阳离子含能盐的爆速和爆压等爆轰参数。结果表明,双阳离子含能盐具有良好的热稳定性,其分解温度均高于169 ℃,第一阶段的热分解峰值温度均接近200 ℃。除了5-硝基四唑双阳离子盐,其余双阳离子含能盐均较对应单阳离子咪唑含能盐具有更高的热分解温度;同时所有双阳离子含能盐较对应单阳离子含能盐具有更高的熔点;部分双阳离子咪唑含能盐较对应单阳离子含能盐具有更高的密度。3,3′-亚甲基双(2-甲基-1-硝酰氧乙基咪唑)二(3,5-二硝基-1,2,4-三唑)盐和3,3′-亚甲基双(2-甲基-1-硝酰氧乙基咪唑)二(5-硝基四唑)盐的爆速和爆压介于2,4,6-三硝基甲苯(TNT)和黑索今(RDX)之间,表现出较好的爆轰性能。
关键词双阳离子     季铵化     硝化     热性能     爆轰性能    
Synthesis and Properties of Bis-cationic Imidazolium Energetic Salts
LEI Jian-lei , NING Hong-li , HU Gang , SU Ke , YANG Hai-jun     
School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
Abstract: Using 2-methylimidazole as raw material and dibromo methane as a bridging reagent, a bis-cationic energetic compound, 3, 3′-methylene-bis (2-methyl-1-nitroxyethylimidazolium)dinitrate(3)was synthesized via. methylene-bridging, quaternization, and nitration reactions. Then a series of bis-cationic energetic salts were obtained via the metathesis reactions of compound 3 with negative ions of picrate, dinitramide, 3, 5-dinitro-1, 2, 4-triazolate, and 5-nitrotetrazolate as anions. All the synthesized energetic salts were analyzed and characterized by ultraviolet visible spectrum(UV-Vis), infrared spectrum(IR), mass spectrum(MS), nuclear magnetic resonance(NMR), elemental analysis, and thermogravimetric analysis(TGA). The detonation peformance of the synthesized bis-cationic energetic salts, such as detonation velocity and detonation pressure, were estimated by Kamlet-Jacobs equation. Results show that the bis-cationic energetic salts have a good thermal stability, their decomposition temperatures are above 169 oC and their thermal decomposition peak temperatures are close to 200 ℃ for the first decomposition stage.The bis-cationic energetic salts apart from 5-nitrotetrazolate bis-cationic energetic salt have a better thermal stability than the corresponding mono-cationic imidazolium energetic salts. At the same time, all the bis- cationic energetic salts have a higher melting point than the corresponding mono-cationic energetic salts. Some bis-cationic imidazolium energetic salts have a higher density than the corresponding mono-cationic energetic salts. The detonation velocities and detonation pressures of 3, 3′-methylene-bis (2-methyl-1-nitroxyethylimidazolium)- di (3, 5-dinitro-1, 2, 4-triazolate)and 3, 3′-methylene- bis(2-methyl-1-nitroxyethylimidazolium)-di (5-nitrotetrazolate)are between those of 2, 4, 6-trinitrotoluene(TNT)and 1, 3, 5-trinitroperhydro-1, 3, 5-triazine(RDX), showing better detonation performances.
Key words: bis-cationic    quaternization    nitration    thermal property    detonation performance    
1 引言

近年来,含能盐作为一类新兴的功能材料引起了广泛关注。作为一类独特的含能材料,与传统高能炸药相比,含能盐具有密度高、热稳定性好、蒸汽压低、环境友好等特点,并且对摩擦、撞击、静电等外界刺激不敏感,在高能钝感炸药和推进剂领域都展现出巨大的研究价值和实际应用潜力[1-3]。含能盐可由不同的阴阳离子组合而成,结构可设计性极强[4]。阳离子和阴离子组合的简单改变,或者改变某一离子的性质,可以极大地调节含能盐的物理化学性质,为开发综合性能优异的新一代含能材料提供了巨大机遇。

唑类含能盐在元素组成上具有氮高氢低的特点,易于达到氧平衡,并且分子中往往存在大量C—N、N—N或N—O等含能键,具有高的生成焓[5]。目前,已对咪唑、三唑和四唑等唑类含能盐进行了大量合成和性能研究,得到一批性能优异的含能盐化合物[3, 6-8]。从结构上来看,绝大部分已报道的含能盐只由单阳离子和单阴离子组成,鲜见双阳离子含能盐,也少见双阴离子型含能盐[9-10]。对非含能离子液体研究发现,双阳离子盐较单阳离子盐具有更高的密度、玻璃化温度和熔点,以及更好的热稳定性和电化学稳定性等[11-14]。因此,对双阳离子含能盐进行合成和性能研究,有望获得综合性能更好的含能材料。

以2-甲基咪唑为原料,通过亚甲基桥联、季铵化、硝化、复分解等反应合成了一系列新的亚甲基桥联咪唑类双阳离子含能化合物,并通过紫外可见光谱(UV-Vis)、红外光谱(FT-IR)、质谱(ESI-MS)、核磁共振(1H NMR、13C HMR)、元素分析和热重分析(TG-DTG)等对其结构进行了表征,采用热重分析(TG-DTG)研究了其热性能,通过Kamlet-Jacobs方程预测了其爆速爆压等爆轰性能。

2 实验部分 2.1 试剂与仪器

苦味酸,台山市众城化工有限公司;氨基磺酸,氰基胍,2-甲基咪唑,2-氯乙醇,二溴甲烷,717型强碱性Ⅰ型阴离子交换树脂,四丁基溴化铵,乙腈,亚硝酸钠,碳酸钾,氢氧化钾,CuSO4·5H2O,氢氧化钠,发烟硫酸,发烟硝酸,乙醇,甲醇,乙酸乙酯,异丙醇,乙醚,丙酮等,成都市科龙化工试剂厂;3,5-二氨基-1,2,4-三氮唑,叠氮化钠,西亚试剂有限公司。以上试剂或溶剂均为市售分析纯,使用前未经进一步处理。

上海美谱达UV -1800PC紫外可见分光光度计(UV-Vis);美国Perkin Elmer Spectrum 1000傅里叶变换红外光谱仪(FT-IR);美国Varian 1200L液相色谱质谱联用仪(LC-MS);瑞士Bruker Avance Ⅲ 600超导核磁共振波谱仪(NMR,TMS为内标);瑞士Bruker Avance III HD 400超导核磁共振波谱仪(NMR,TMS为内标);南京科航Ry-1G熔点仪(温度计未校正);德国elementar Vario ELCUBE元素分析仪;美国Perkin Elmer Pyris 1热重分析仪(TG)。

2.2 实验过程 2.2.1 碱金属含能盐的合成

参考文献[15]合成苦味酸钾盐(KP),产率94.3%。m.p. 248~250 ℃,文献值246 ℃[15];ESI-MS(-)m/z:[M-K]- 227.7。

参考文献[16]合成二硝酰胺钾盐(KDN),产率36.5%。m.p. 128~130 ℃,文献值130 ℃[16];ESI-MS(-)m/z:[M-K]- 105.6。

参考文献[17]合成3,5-二硝基-1,2,4-三氮唑钾盐(KDNT),产率77.4%。m.p. 260~262 ℃,文献值265 ℃ [17];ESI-MS(-)m/z:[M-K]- 157.7。

参考文献[18]合成5 -硝基四唑钠盐二水合物(NaNT·2H2O),产率65.7%。m.p. 207~208 ℃,文献值210 ℃ [18];ESI-MS(-)m/z:[M-Na]- 113.8。

2.2.2 3,3′ -亚甲基双(2-甲基-1-硝酰氧乙基咪唑)二硝酸盐(3)的合成

3,3′-亚甲基双(2-甲基-1-硝酰氧乙基咪唑)二硝酸盐(3)的合成路线如Scheme 1所示。

Scheme 1 Synthesis of methylene-bridged bis-imidazolium energetic salt 3
2.2.2.1 N,N ′-亚甲基双(2-甲基咪唑)(1)的合成

参考文献[19]合成化合物1,产率62.5%。m.p. 166~168 ℃;ESI-MS(+)m/z:[M+H]+ 177.1。

2.2.2.2 3,3′ -亚甲基双(2-甲基-1-羟乙基咪唑)二氯化物(2)的合成

参照文献[20]合成化合物2,产率88.1%。ESI- MS(+)m/z:[M+H]+ 133.0。

2.2.2.3 3,3′ -亚甲基双(2-甲基-1-硝酰氧乙基咪唑)二硝酸盐(3)的合成[21]

在磁力搅拌下,将20 mL发烟HNO3加入到50 mL单口烧瓶中,冰浴冷却,控制温度低于10 ℃。将化合物2(2.2 g,6.5 mmol)分批加入到发烟HNO3中。加料过程中,控制温度不超过15 ℃。加料完后,在该温度下继续搅拌2 h,然后自然升至室温搅拌24 h。将反应混合物缓慢倒入50 mL冰乙醚中,静置,除去上清液,下层粘稠液体用乙醚洗涤三次,无水乙醇重结晶,得到白色固体产物3,产率77.8%。m. p. 146~148 ℃;UV - vis(H2O)λmax:228 nm;1H NMR(600 MHz,D2O)δ:7.60(d,1H,C5—H,imidazole),7.56(d,1H,C4—H,imidazole),6.54(s,1H,N—CH2—N),4.82(t,2H,N—CH2—C),4.56(t,2H,C—CH2—ONO2),2.76(s,3H,C—CH3);13C NMR(151 MHz,D2O)δ:146.90(C—CH3,imidazole),123.04(C5,imidazole),121.39(C4,imidazole),70.16(N—CH2—N),57.49(N—CH2—C),45.70(C—CH2—ONO2),9.73(C—CH3);FT - IR(KBr,ν/cm-1):3163.9,3110.3,3061.1,2959.5,2899.0,1632.0,1591.2,1540.6,1384.5,1280.6,1245.5,1179.0,1123.6,1075.9,1020.3,894.2,861.8,752.1,707.6,666.6;ESI-MS m/z:178.1(M+);61.8(M-);Anal. calcd for C 13H20N8O12:C 43.82,H 5.66,N 23.58,O 26.94;found C 43.79,H 5.69,N 23.60,O 26.92。

2.2.3 双阳离子含能盐5a~5d的合成

双阳离子含能盐5a~5d的合成路线如Scheme 2所示。

Scheme 2 Synthesis of methylene-bridged bis-imidazolium energetic salts 5a-5d
2.2.3.1 3,3′ -亚甲基双(2-甲基-1-硝酰氧乙基咪唑)二氯化物(4)的合成[21]

室温下,将化合物3和过量的Cl-离子交换树脂置于去离子水中,搅拌24 h。过滤,并用去离子水洗涤树脂三次,旋蒸滤液得到化合物4,不经过进一步纯化直接用于下步反应。

2.2.3.2 双阳离子含能盐5a~5d的合成

称取化合物4(0.4 g,1.0 mmol),溶于2 mL甲醇中,丙酮稀释至50 mL。将碱金属含能盐或NaNT·2H2O(2.0 mmol)加入到混合溶液中,25 ℃下搅拌24 h。过滤除去生成的无机盐,蒸除溶剂,残余物用无水乙醇重结晶即得到所需要的产物。

3,3′ -亚甲基双(2-甲基-1-硝酰氧乙基咪唑)二苦味酸盐(5a):亮黄色固体,产率97.8%。m.p. 143~ 145 ℃;UV-vis(acetone)λmax:228 nm,354 nm;1H NMR(600 MHz,DMSO-d6δ:8.63(s,2H,picrate),7.95(d,1H,C5—H,imidazole),7.89(d,1H,C4—H,imidazole),6.67(s,1H,N—CH2—N),4.92(t,2H,N—CH2—C),4.66(t,2H,C—CH2—ONO2),2.84(s,3H,C—CH3);13C NMR(151 MHz,DMSO-d6δ:161.31(C1,picrate),147.49(C—CH3,imidazole),142.29(C2,C6,picrate),125.74(C3,C5,picrate),124.69(C4,picrate),123.22(C5,imidazole),122.01(C4,imidazole,),71.20(N—CH2—N),57.24(N—CH2—C),45.69(C—CH2—ONO2),10.58(C—CH3);FT - IR(KBr,ν/cm-1):3138.6,3101.7,3082.2,2991.0,2909.9,1645.1,1634.4,1609.5,1556.6,1508.2,1489.1,1434.0,1363.6,1344.2,1326.8,1308.3,1281.0,1261.5,1159.8,1077.6,1027.7,892.4,860.9,791.6,707.4;ESI- MS m/z:178.1(M+);227.8(M-);Anal. calcd for C 25H24N12O20:C 36.96,H 2.98,N 20.69,O 39.38;found C 36.94,H 2.98,N 20.71,O 39.37。

3,3′ -亚甲基双(2-甲基-1-硝酰氧乙基咪唑)二硝酰胺盐(5b):白色粉末,产率96.3%。m. p. 112~ 114 ℃;UV-vis(acetone)λmax:228nm,283 nm;1H NMR(600 MHz,DMSO-d6δ:7.91(d,1H,C5—H,imidazole),7.84(d,1H,C4—H,imidazole),6.62(s,1H,N—CH2—N),4.90(t,2H,N—CH2—C),4.62(t,2H,C—CH2 — ONO2),2.79(s,3H,C—CH3);13C NMR(151 MHz,DMSO-d6δ:147.48(C—CH3,imidazole),123.21(C5,imidazole),121.99(C4,imidazole),71.18(N—CH2—N),57.24(N—CH2—C),45.68(C—CH2—ONO2),10.56(C—CH3);FT - IR(KBr,ν/cm-1):3146.9,3020.1,2965.4,2917.2,1641.2,1592.2,1514.6,1431.2,1341.2,1281.0,1243.1,1182.2,1125.9,1006.2,895.47,852.4,756.1,667.0;ESI-MS m/z:178.1(M+);105.6(M-);Anal. calcd for C 13H20N12O14:C 27.47,H 3.55,N 29.57,O 39.41;found C 27.44,H 3.58,N 29.55,O 39.43。

3,3′ -亚甲基双(2-甲基-1-硝酰氧乙基咪唑)二(3,5-二硝基-1,2,4-三唑)盐(5c):黄色固体,产率95.7%。m. p. 134~136 ℃;UV - vis(acetone)λmax:228 nm,285 nm;1H NMR(600 MHz,DMSO -d6δ:7.93(d,1H,C5—H,imidazole),7.85(d,1H,C4—H,imidazole),6.65(s,1H,N—CH2—N),4.90(t,2H,N—CH2—C),4.64(t,2H,C—CH2—ONO2),2.80(s,3H,C—CH3);13C NMR(151 MHz,DMSO -d6δ:163.32(C5,triazole),147.50(C—CH3,imidazole),123.23(C5,imidazole),122.01(C4,imidazole),71.20(N—CH2—N),57.36(N—CH2—C),57.26(C3,triazole),45.71(C—CH2—ONO2),10.60(C—CH3);FT - IR(KBr,ν/cm-1):3161.2,3130.7,2960.4,2906.9,1637.9,1589.7,1550.3,1485.5,1378.7,1343.9,1282.5,1240.6,1180.9,1124.7,1093.8,1037.6,900.7,865.9,840.4,752.8,711.0,651.6;ESI-MS m/z:178.1(M+);157.8(M-);Anal. calcd for C 17H20N16O14:C 30.36,H 3.00,N 33.33,O 33.31;found C 30.33,H 3.03,N 33.36,O 33.28。

3,3′-亚甲基双(2-甲基-1-硝酰氧乙基咪唑)二(5-硝基四唑)盐(5d):白色固体,产率98.4%。m.p. 116~ 118 ℃;UV-vis(acetone)λmax:228 nm,256 nm;1H NMR(600 MHz,DMSO - d6δ:7.93(d,1H,C5—H,imidazole),7.85(d,1H,C4—H,imidazole),6.65(s,1H,N—CH2—N),4.90(t,2H,N—CH2—C),4.64(t,2H,C—CH2—ONO2),2.80(s,3H,C—CH3);13C NMR(151 MHz,DMSO-d6δ:169.17(tetrazole),147.52(C—CH3,imidazole),123.20(C5,imidazole),121.98(C4,imidazole),71.20(N—CH2—N),57.27(N—CH2—C),45.68(C—CH2—ONO2),10.58(C—CH3);FT - IR(KBr,ν/cm-1):3183.1,3161.5,3138.0,3090.6,3005.8,2971.9,2899.1,1631.7,1589.3,1532.1,1432.6,1413.7,1369.4,1339.7,1312.7,1281.5,1244.1,1183.8,1166.6,1123.9,1021.6,897.8,860.3,837.7,761.0,732.3,709.7,670.5;ESI - MS m/z:178.1(M+);113.7(M-);Anal. calcd for C15H20N16O10:C 30.83,H 3.45,N 38.35,O 27.38;found C 30.85,H 3.43,N 38.37,O 27.35。

3 结果与讨论 3.1 双阳离子含能盐3和5a~5d的合成过程分析

以2-甲基咪唑为原料,二溴甲烷作为桥联试剂,采用无溶剂法对化合物1进行了合成研究[19]。研究发现,无溶剂法的反应体系粘稠,搅拌不均匀,反应较复杂,分离纯化相对困难。以乙腈作为反应溶剂,采用乙酸乙酯重结晶除去未反应的2-甲基咪唑原料,即可合成得到亚甲基桥联化合物1。以氯乙醇为季铵化试剂,化合物1经双季铵化、无水乙醇重结晶即得到双阳离子化合物2[19]。室温下,以发烟硝酸为硝化试剂,对化合物2进行硝酸酯化,可较高产率地合成得到双阳离子含能盐3。在该硝酸酯化反应中,化合物2的氯离子也同时被置换为硝酸根离子。

由于硝酸钠或硝酸钾微溶于丙酮,以丙酮为溶剂时,化合物3与KP、KDN、KDNT或NaNT·2H2O等碱金属盐的复分解反应并不完全。鉴于氯化钠或氯化钾难溶于丙酮,实验中先采用Cl-型离子交换树脂将化合物3的硝酸根离子交换为氯离子得到化合物4,进而发生复分解反应成功得到对应的双阳离子含能盐5a~5d

3.2 双阳离子含能盐3和5a~5d的结构表征

双阳离子含能盐35a~5d的结构均通过UV-Vis、FT-IR、ESI-MS、1H NMR、13C NMR和元素分析等表征。

UV-Vis测试发现,化合物35a~5d均存在一个228 nm的最大紫外吸收,表明所合成的化合物均存在2-甲基咪唑季铵盐阳离子[21]。此外,化合物5a~5d还分别存在354,283,285,256 nm的最大紫外吸收峰,表明所合成的化合物还含有苦味酸负离子、二硝酰胺负离子、3,5-二硝基-1,2,4-三氮唑负离子或5-硝基四唑负离子等阴离子[21]

对化合物35a~5d进行了ESI-MS测试。结果显示,在正离子模式下,化合物35a~5d均含有亚甲基桥联双(2-甲基咪唑)季铵盐阳离子峰178.1。负离子模式下,化合物35a~5d分别检测到硝酸根离子峰61.8,苦味酸离子峰227.8,二硝酰胺离子峰105.6,3,5-二硝基-1,2,4-三氮唑离子峰157.8,以及5-硝基四唑离子峰113.7。质谱测试表明,除了化合物3检测到硝酸根离子峰61.8外,化合物5a~5d均没有检测到硝酸根和氯离子离子峰,表明复分解反应较彻底。

对化合物35a~5d进行了FT-IR分析。所合成的离子化合物均存在咪唑环C—H的伸缩振动吸收峰(3200~3000 cm-1),侧链烷基的C—H伸缩振动吸收峰(3000~2700 cm-1),咪唑环骨架的特征振动吸收峰(1550 cm-1和1450 cm-1),以及硝酸酯基的特征吸收峰(1660~1625 cm-1、1300~1255 cm-1、870~ 830 cm-1、770~680 cm-1)。此外,化合物5a~5d具有C—NO2特征伸缩振动吸收峰(1530~1510 cm-1和1350~1330 cm-1),化合物5a具有苯环的特征振动吸收峰(1500~1650 cm-1),化合物5b5d具有N—C—N的特征振动吸收峰(1020 cm-1),从而进一步证明了所合成的含能离子化合物结构正确。

化合物35a~5d1H NMR图谱中均存在亚甲基桥联双(2-甲基咪唑)阳离子的质子信号(δ 7.6,7.5,6.5,4.8,4.5,2.7);除此之外,化合物5a1H NMR图谱中还存在苦味酸根的质子信号(δ8.63)。在13C NMR图谱中,化合物35a~5d均存在亚甲基桥联双(2-甲基咪唑)阳离子的碳信号(δ 146,123,121,70,57,45,9);除此之外,化合物5a存在苦味酸根的碳信号(δ 161.31,142.29,125.74,124.69),化合物5c存在3,5-二硝基-1,2,4-三唑阴离子的碳信号(δ 163.32和57.26),化合物5d存在5-硝基四唑阴离子的碳信号(δ 169.17)。

3.3 双阳离子含能盐3和5a~5d的热分析

TG-DTG实验测试条件为:氮气气氛,气体流速10 mL·min-1,升温速率10 ℃·min-1,温度区间20~ 500 ℃,样品量1.0 mg。

图 1为化合物3在氮气氛围下的TG和DTG曲线。由TG曲线得到化合物3的分解温度为185 ℃左右,高于对应的单阳离子含能盐(165 ℃[21-23])。由DTG曲线可知化合物3有两个主要分解过程,失重率分别为25.2 %和55.3%。

图 1 化合物3在氮气氛围下的TG-DTG曲线 Fig .1 TG-DTG curves of compound 3 under nitrogen atmosphere

图 2图 3分别为5a~5d在氮气氛围下的TG和DTG曲线。从TG曲线可知化合物5a~5d的分解温度分别为186,169,182,176 ℃。与非含能双阳离子盐类似[9],所合成的双阳离子含能盐35a~5c较对应单阳离子含能盐[21-23]分解温度更高,热稳定性更好。由DTG曲线显示化合物5a~5c有两个分解过程,化合物5d有三个分解过程,其中第一个分解过程由硝酰氧乙基侧链的分解产生[21]

图 2 化合物5a~5d在氮气氛围下的TG曲线 Fig .2 TG curves of compounds 5a-5d under nitrogen atmosphere
图 3 化合物5a~5d在氮气氛围下的DTG曲线 Fig .3 DTG curves of compounds 5a-5d under nitrogen atmosphere

与非含能双阳离子盐[9]类似,所合成的双阳离子含能盐的熔点明显高于对应单阳离子含能盐。双阳离子含能盐35a~5d的熔点均高于110 ℃,而对应单阳离子含能盐的熔点均低于100 ℃[21-23]

3.4 双阳离子含能盐3和5a~5d的爆轰性能计算

含能化合物的爆速D(Detonation velocity)和爆压p(Detonation pressure)是衡量该化合物能量的重要依据。运用Gaussian 09程序包,采用密度泛函理论(DFT)的B3LYP方法,在6-31++G(d,p)基组水平上对所合成的双阳离子含能盐35a~5d进行了几何构型优化和频率计算,得到其稳定的几何构型,检查无虚频;运用Born-Haber循环计算含能盐的生成焓;运用Kamlet -Jacobs公式预测其爆速和爆压等爆轰性能[24-26]

采用等键反应计算所合成双阳离子含能盐35a~5d的摩尔生成焓,所涉及的等键反应如下(Scheme 3):

Scheme 3 Isodesmic reactions of cation

根据Born-Haber循环(Scheme 4),按照下面公式[22]计算含能盐的生成热:

$ \begin{array}{l} \Delta H_{298}^{\rm{ \mathsf{ θ} }}({\rm{ionic}}\;{\rm{salts}},298{\rm{K}}) = \Sigma \Delta H_{298}^{\rm{ \mathsf{ θ} }}({\rm{cation}},298{\rm{K}}) + \\ \;\;\;\;\;\;\;\;\;\Sigma \Delta H_{298}^{\rm{ \mathsf{ θ} }}({\rm{anion}},298{\rm{K}}) - \Delta {H_T} \end{array} $ (1)
$ \Delta {H_T} = {U_{{\rm{POT}}}} + [p({n_M}/2 - 2{\rm{ }}) + q({n_X}/2 - 2{\rm{ }})]RT $ (2)
$ {{U_{{\rm{POT}}}} = \gamma {{(\rho /M)}^{1/3}} + \delta } $ (3)
Scheme 4 Born - Haber cycle for the formation of energetic salts

双阳离子含能盐35a~5d的爆速和爆压等爆轰性能可由Kamlet - Jacobs公式进行预测[27-29]

$ D = 1.01{(N{{\bar M}^{1/2}}{Q^{1/2}})^{1/2}}(1 + 1.30\rho ) $ (4)
$ p = 1.558{\rho ^2}N{{\bar M}^{1/2}}{Q^{1/2}} $ (5)

双阳离子咪唑类含能盐35a~5d的爆速爆压等爆轰性能见表 1。计算结果显示合成的双阳离子含能盐具有较好的爆轰性能。化合物5c5d较对应单阳离子盐[2123]具有更好的爆轰性能,其爆速分别为8.14 km·s-1和8.06 km·s-1,爆压分别为31.51 GPa和29.52 GPa,介于2,4,6-三硝基甲苯(TNT)和黑索今(RDX)[30-32]之间。双离子盐5c5d的密度分别为1.65 g·cm-3和1.63 g·cm-3,高于对应单阳离子盐(1.59 g·cm-3和1.42 g·cm-3[21, 23]

表 1 双阳离子咪唑类含能盐的摩尔生成焓、密度、爆速和爆压 Table1 Molar enthalpy of formation, density, detonation velocity and detonation pressure of bis-cationic imidazolium energetic salts
4 结论

(1)以2-甲基咪唑为原料,经亚甲基桥联、季铵化、硝化和复分解反应成功合成得到5个3,3′ -亚甲基双(2-甲基-1-硝酰氧乙基咪唑)双阳离子型含能盐35a~5d

(2)Kamlet-Jacobs方程计算表明所合成的双阳离子含能盐爆轰性能优良,其中化合物5c5d的爆轰性能优于对应单阳离子含能盐,其爆速分别为8.14 km·s-1和8.06 km·s-1,爆压分别为31.51 GPa和29.52 GPa,介于TNT和RDX之间。

(3)双阳离子型含能盐的熔点均高于110 ℃,而对应的单阳离子含能盐却低于100 ℃,表明所合成的双阳离子含能盐较对应单阳离子盐具有更高的熔点;热重分析表明,除了5-硝基四唑盐5d外,其它双阳离子含能盐较对应单阳离子含能盐具有更好的热稳定性;部分双阳离子含能盐较单阳离子含能盐具有更高的密度和更好的爆轰性能。

参考文献
[1]
张至斌, 张建国, 秦涧, 等. 1, 1'-二羟基-5, 5'-联四唑-二氨基乙二肟(DAGBTO)富氮含能盐的合成、晶体结构及热性能[J]. 含能材料, 2016, 24(5): 421-426.
ZHANG Zhi-bin, ZHANG Jian-guo, QIN Jian, et al. Synthesis, crystal structure and thermal behavior of nitrogen-riched energetic salt of diaminoglyoxinium 1H, 1'H-5, 5'-bitetrazole- 1, 1'-diolate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(5): 421-426.
[2]
刘晴, 杨瑾, 任莹辉, 等. 3, 6-双(1-氢-1, 2, 3, 4-四唑-5-氨基)-s-四嗪(BTATz)含能盐的合成与性能[J]. 含能材料, 2017, 25(7): 570-578.
LIU Qing, YANG Jin, REN Yin-hui, et al. Synthesis and properties of energetic ionic salts based on 3, 6-bis(1H-1, 2, 3, 4- tetrazol-5-yl-amino)-s-tetrazine(BTATz)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(7): 570-578.
[3]
罗义芬, 毕福强, 王伯周, 等. 1, 1'-二羟基-3, 3'-二硝基-5, 5'-联- 1, 2, 4-三唑含能离子盐合成、晶体结构及性能[J]. 含能材料, 2017, 25(10): 848-852.
LUO Yi-fen, BI Fu-qiang, WANG Bo-zhou, et al. Synthesis, crystal structure and performance of 3, 3' -dinitro-5, 5' -bis-1, 2, 4-triazole-1, 1'-diolate energetic ionic salts[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(10): 848-852. DOI:10.11943/j.issn.1006-9941.2017.10.010
[4]
Sebastiao E, Cook C, Hu A, et al. Recent developments in the field of energetic ionic liquids[J]. Journal of Materials Chemistry A, 2014, 2(22): 8153-8173. DOI:10.1039/C4TA00204K
[5]
Sivabalan R, Talawar M B, Senthilkumar N, et al. Studies on azotetrazolate based high nitrogen content high energy materials potential additives for rocket propellants[J]. Journal of Thermal Analysis & Calorimetry, 2004, 78(3): 781-792.
[6]
Zhang Q, Shreeve J M. Energetic ionic liquids as explosives and propellant fuels:a new journey of ionic liquid chemistry[J]. Chemical Reviews, 2014, 114(20): 10527-10574. DOI:10.1021/cr500364t
[7]
Katritzky A R, Yang H, Zhang D, et al. Strategies toward the design of energetic ionic liquids:nitro- and nitrile-substituted-N, N'-dialkylimidazolium salts[J]. New Journal of Chemistry, 2006, 30(3): 349-358. DOI:10.1039/b509260d
[8]
Lin Q H, Li Y C, Li Y Y, et al. Energetic salts based on 1-amino-1, 2, 3-triazole and 3-methyl-1-amino-1, 2, 3-triazole[J]. Journal of Materials Chemistry, 2011, 22(2): 666-674.
[9]
Shirota H, Mandai T, Fukazawa H, et al. Comparison between dicationic and monocationic ionic liquids:liquid density, thermalproperties, surface tension, and shear viscosity[J]. Journalof Chemical & Engineering Data, 2011, 56(5): 2453-2459.
[10]
Fischer N, Fischer D, Klapotke T, et al. Pushing the limits of energetic materials:the synthesis and characterization of dihydroxylammonium 5, 5-prime-bistetrazole-1, 1-prime-diolate[J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422. DOI:10.1039/c2jm33646d
[11]
Liu W, Liu W L, Pang S P. Structures and properties of energetic cations in energetic salts[J]. Rsc Advances, 2017, 7(6): 3617-3627. DOI:10.1039/C6RA26032B
[12]
Anderson J L, Ding R, Ellern A, et al. Structure and properties of high stability geminal dicationic ionic liquids[J]. Journal of the American Chemical Society, 2005, 127(2): 593-604. DOI:10.1021/ja046521u
[13]
And X H, Armstrong D W. Using geminal dicationic ionic liquids as solvents for high-temperature organic reactions[J]. Organic Letters, 2005, 7(19): 4205-4208. DOI:10.1021/ol051637w
[14]
Marcos P M, Ascenso J R, Segurado M A P, et al. Synthesis, binding properties and theoretical studies of butylhexahomotrioxacalix[J]. Tetrahedron, 2009, 65(2): 496-503. DOI:10.1016/j.tet.2008.11.005
[15]
盛涤伦, 马凤娥. 苦味酸钾的合成、性能及其应用[J]. 含能材料, 2004, 12(6): 94-96.
SHENG Di-lun, MA Feng-e. Preparation, properties and applications of potassium picrate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2004, 12(6): 94-96.
[16]
雷晴, 卢艳华, 何金选. 二硝酰胺盐的放大合成工艺及性能表征[J]. 含能材料, 2016, 24(11): 1093-1096.
LEI Qing, LU Yan-hua, HE Jin-xuan. Enlargement synthesis technology and perfomance characterization of dinitramide salts[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(11): 1093-1096. DOI:10.11943/j.issn.1006-9941.2016.11.011
[17]
Haiges R, Kaplan S M, Christe K O. Synthesis and structural characterization of 3, 5-dinitro-1, 2, 4-triazolates[J]. Dalton Transactions, 2015, 44(7): 2978-2988. DOI:10.1039/C4DT03583F
[18]
Klapötke T M, Sabaté C M, Welch J M. Alkali metal5-nitrotetrazolate salts:prospective replacements for service lead(Ⅱ) azide in explosive initiators[J]. Dalton Transactions, 2008, 252(45): 6372
[19]
Cure J, Poteau R, Gerber I C, et al. Dimeric gold bis(carbene)complexes by transmetalation in water[J]. Organometallics, 2012, 31(2): 619-626. DOI:10.1021/om2009183
[20]
Schwarz J, Bohm V P, Gardiner M G, et al. Polymer-supported carbene complexes of palladium:well-defined, air-stable, recyclable catalysts for the heck reaction[J]. Chemistry, 2015, 6(10): 1773-1780.
[21]
Yang H, Liu Y, Ning H, et al. Synthesis, structure and properties of imidazolium-based energetic ionic liquids[J]. Rsc Advances, 2017, 7(53): 33231-33240. DOI:10.1039/C7RA05601J
[22]
Bottaro J C, And P E, PSchmitt R J. 1, 1, 3, 3-tetraoxo-1, 2, 3-triazapropene anion, a new oxy anion of nitrogen: the dinitramide anion and its salts[J]. Journal of the American Chemical Society, 1997, 119(40): 9405-9410. DOI:10.1021/ja9709278
[23]
刘跃佳, 张晓娟, 宁弘历, 等. 咪唑类含能离子液体的合成及性能研究[J]. 有机化学, 2016, 36(5): 1133-1142.
LIU Yue-jia, ZHANG Xiao-juan, NING Hong-li, et al. Studies on the synthesis and properties of energetic ionic liquids based on imidazolium compounds[J]. Chinese Journal of Organic Chemistry, 2016, 36(5): 1133-1142.
[24]
Wang R, Gao H, Ye C, et al. Heterocyclic-basednitrodicyanomethanide and dinitrocyanomethanide salts:a family of new energetic ionic liquids[J]. Inorganic Chemistry, 2007, 46(3): 932-938. DOI:10.1021/ic0619198
[25]
Gao Y, Gao H, Piekarski C, et al. Azolium salts functionalized with cyanomethyl, vinyl, or propargyl substituents and dicyanamide, dinitramide, perchlorate and nitrate anions[J]. European Journal of Inorganic Chemistry, 2007(31): 4965-4972.
[26]
He L, Tao G H, Parrish D A, et al. Liquid dinitromethanide salts[J]. Inorganic Chemistry, 2011, 50(2): 679-685. DOI:10.1021/ic101959r
[27]
Qiu L, Xiao H, Gong X, et al. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines[J]. Journal of Physical Chemistry A, 2006, 110(10): 3797-3807. DOI:10.1021/jp054169g
[28]
Wang R, Gao H, Ye C, et al. Heterocyclic-basednitrodicyanomethanide and dinitrocyanomethanide salts:a family of new energetic ionic liquids[J]. Inorganic Chemistry, 2007, 46(3): 932-938. DOI:10.1021/ic0619198
[29]
Kamlet M J, Jacobs S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C─H─N─O explosives[J]. Journal of Chemical Physics, 1968, 48(1): 23-35. DOI:10.1063/1.1667908
[30]
Zhang Y, Guo Y, Joo Y, et al. 3, 4, 5-trinitropyrazole-based energetic salts[J]. Chemistry-A European Journal, 2010, 16(35): 10778-10784. DOI:10.1002/chem.201001243
[31]
Meyer R, Köhler J, Homburg A. Explosives[B], 6th ed., Wiley-VCH, Weinheim, Germany, 2007.
[32]
D'Anna F, Gunaratne H Q, Lazzara G, et al. Solution and thermal behaviour of novel dicationic imidazolium ionic liquids[J]. Organic & Biomolecular Chemistry, 2013, 11(35): 5836-5846.
图文摘要

A series of bis-cationic imidazolium energetic salts were synthesized by bridging, quaternization,nitration,and metathesis reactions, most of which have better thermal stabilities and detonation performances than the corresponding monocationic energetic salts.