文章快速检索     高级检索
  含能材料  2018, Vol. 26 Issue (9): 744-748.  DOI: 10.11943/CJEM2018012
0

引用本文  

张正中, 邓重清, 李吉祯, 等. 碳纳米管对AP/CMDB推进剂燃烧性能和力学性能的影响[J]. 含能材料, 2018, 26(9): 744-748. DOI: 10.11943/CJEM2018012.
ZHANG Zheng-zhong, DENG Chong-qing, LI Ji-zhen, et al. Effects of Carbon Nanotubes(CNTs)on the Combustion and Mechanical Properties of AP/CMDB Propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(9): 744-748. DOI: 10.11943/CJEM2018012.

基金项目

装备发展部重大预研专项

作者简介

张正中(1987-),男,工程师,主要从事固体推进剂配方研究。e-mail:zhangzhengzhong920@163.com

文章历史

收稿日期:2018-01-03
修回日期:2018-03-10
网络出版:2018-05-08
碳纳米管对AP/CMDB推进剂燃烧性能和力学性能的影响
张正中 , 邓重清 , 李吉祯 , 刘晓军 , 唐秋凡     
西安近代化学研究所,陕西 西安 710065
摘要:为了改善溶剂压伸法制备的高氯酸铵/复合改性双基(AP/CMDB)推进剂的燃烧性能和力学性能,采用差示扫描量热法(DSC)和扫描电子显微镜(SEM)研究了碳纳米管(CNTs)对AP/CMDB推进剂主要组分热分解性能及AP/CMDB推进剂微观结构的影响,测试了含质量分数为0.1%、0.3%和0.5% CNTs的AP/CMDB推进剂的燃速和抗冲强度。结果表明,CNTs可以有效催化AP的热分解,使AP低温分解峰消失,高温分解峰温提前39.9 ℃,但对NC/NG双基组分的热分解影响不大;CNTs可以改善AP/ CMDB推进剂的微观结构,添加0.5% CNTs的推进剂中无明显微裂纹;CNTs可以有效改善AP/CMDB推进剂的燃烧性能和力学性能,随着CNTs含量的增加,推进剂的燃速提高、压强指数降低,推进剂的抗冲强度增大;添加0.5% CNTs的AP/CMDB推进剂10 MPa下燃速为61.19 mm·s-1,10~22 MPa压强指数为0.51,-40 ℃下的抗冲强度为5.55 kJ·m-2
关键词碳纳米管(CNTs)     高氯酸铵复合改性双基(AP/CMDB)推进剂     燃速     压强指数     抗冲强度    
Effects of Carbon Nanotubes(CNTs)on the Combustion and Mechanical Properties of AP/CMDB Propellant
ZHANG Zheng-zhong , DENG Chong-qing , LI Ji-zhen , LIU Xiao-jun , TANG Qiu-fan     
Xi′an Modern Chemistry Research Institute, Xi′an 710065, China
Abstract: To improve the combustion and mechanical properties of ammonium perchlorate(AP)/composite modified double base(CMDB)propellant prepared by the solvent-extrusion method, the effects of carbon nanotubes(CNTs)on the thermal decomposition performances of the main components of AP/CMDB propellant and the microstructure of AP/CMDB propellant were studied by differential scanning calorimetry (DSC) and scanning electronic microscope(SEM). The burning rate and impact strength of AP/CMDB propellants with CNTs of mass fraction as 0.1%, 0.3% and 0.5% were tested. Results show that CNTs can effectively catalyze the thermal decomposition of AP, and make the low temperature decomposition peak of AP disappear, and the peak temperature of high temperature decomposition of AP shift 39.9 ℃ downwards, but it has little effect on the thermal decomposition of double base components NC and NG. CNTs can improve the microstructure of AP/CMDB propellant. There are no obvious micro cracks in the AP/CMDB propellant with the addition of 0.5% CNTs. CNTs can effectively improve the combustion and mechanical properties of AP / CMDB propellant. With increasing the content of CNTs the burning rate increases, the pressure exponent decreases, and the impact strength increases of the propellant. For AP/CMDB propellant with 0.5% CNTs, the burning rate at 10 MPa is 61.19 mm·s-1, the pressure exponent between 10 MPa and 22 MPa is 0.51 and the impact strength is 5.55 kJ·m-2 at -40 ℃.
Key words: carbon nanotubes(CNTs)    ammonium perchlorate/composite modified double base(AP/CMDB)propellant    burning rate    pressure exponent    impact strength    
1 引言

溶剂压伸法制备的含高氯酸铵(AP)的复合改性双基(AP/CMDB)推进剂具有能量水平高、燃速高且易于调节、性能稳定等优点,可以有效满足发动机获取瞬时大推力的要求,广泛应用于单兵火箭和反坦克导弹发动机中[1-2]。近年来,随着战术武器向提高射程的方向快速发展,新型单兵多用途火箭等武器装备要求具有更高的初速、更远的有效射程,相应要求装药具有更高的燃烧速度和装填系数以产生更大的瞬时推力,对AP/CMDB推进剂的燃速水平提出了更高要求。AP/CMDB推进剂中含有刚性线型的硝化棉分子,玻璃化温度较高,呈现出高温变软、低温变脆的特征[2-4],所以其低温力学性能较差,难以保证在低温下发动机装药的结构完整性和工作可靠性。目前主要通过添加辅助增塑剂、功能添加剂等技术途径改善AP/CMDB推进剂的力学性能,但这也带来了推进剂能量水平降低、推进剂燃烧不稳定等问题[2-3]

CNTs具有独特的微观结构而表现出良好的化学活性,能够有效催化推进剂中含能组分如AP、奥克托今(HMX)和六硝基六氮杂异伍兹烷(CL-20)等的热分解,并改善固体推进剂的燃烧性能[5-10]。同时,CNTs还具有优异的力学性能,可用于改善复合材料的力学性能[11-12],但利用CNTs改善固体推进剂的力学性能及CNTs在AP/CMDB推进剂中的应用尚未见到相关报道。

为此,本研究将CNTs引入AP/CMDB推进剂中,结合热分析、微观结构及燃速性能的研究结果,分析了CNTs改善推进剂燃烧性能和力学性能的机理,为AP/CMDB推进剂的性能优化奠定了理论基础。

2 实验 2.1 主要原材料

硝化棉(NC),含氮量12.6%、硝化甘油(NG),工业品,西安近代化学研究所;高氯酸铵(AP),d50=1~3 μm,洛阳黎明化工研究院;Al粉,d50=12~15 μm,鞍钢实业微细有限公司;碳纳米管(CNTs),外径约30~100 nm,长度约2~5 μm,西安近代化学研究所;无水乙醇及丙酮,分析纯,西安化学试剂厂。

2.2 样品的制备

推进剂基础配方(质量百分数)为:NC/NG 60%~ 65%,AP 25%~35%,Al粉5%~8%,其它3%~5%。

推进剂样品的制备:NC/NG经压延驱水切成片状,外加乙醇和丙酮混合溶剂,将物料加入10L卧式捏合机,倒入混合溶剂,捏合均匀后,用100T油压机压伸成管状药柱;含CNTs的AP/CMDB推进剂制备,将CNTs按不同比例(质量分数为0.1%,0.3%,0.5%,外加)分别加于混合溶剂中超声分散,其它工序与基础配方AP/CMDB推进剂制备工序相同,所得样品用于测试燃速和抗冲强度。

热分析实验样品的制备:AP/CNTs混合样品,采用电子天平按比例分别称量AP(质量分数95%)和CNTs(质量分数5%),简单混合后装于样品池中;CNTs/NC/NG混合样品,采用电子天平按比例分别称量NC/NG吸收药(质量分数95%)和CNTs(质量分数5%),简单混合后装于样品池中,样品量1~3 mg。

2.3 测试方法

采用德国NETZSCH公司204 DSC,测试AP、AP/ CNTs以及NC/NG和CNTs/NC/NG样品的热分解性性能,样品量1~3 mg,升温速率10 ℃·min-1;N2气氛,N2流速50 mL·min-1;AP及AP/CNTs样品的测试温度范围为100~500 ℃,NC/NG及CNTs/NC/NG样品的测试温度范围为100~300 ℃。采用美国FEI公司Quanta FEG 600 SEM,研究CNTs及AP/CMDB推进剂样品的微观结构。按照GJB770B-2005方法706.1靶线法,测试推进剂样品的燃速;采用维也里经验公式u=u0pn 计算燃速压强指数[13]。按照GJB770B-2005方法417.1简支梁法,测试推进剂样品的抗冲强度[13]

3 结果与讨论 3.1 CNTs对AP热分解性能的影响

AP/CMDB推进剂的主要含能组分为AP和NC/NG双基组分,为了研究CNTs对AP/CMDB推进剂燃烧性能的影响,首先进行了CNTs对AP和NC/NG双基组分热分解性能的影响研究。

AP及AP/CNTs混合样品的DSC曲线如图 1所示。由图 1可以看出,本研究中AP的热分解曲线与文献[14-15]中报道的结果基本一致,AP样品在244.5 ℃出现吸热峰,其原因是AP发生晶型转变,由斜方晶型转变为立方晶型;在307.1 ℃出现微弱的放热峰,对应AP的低温分解阶段;在441.2 ℃出现明显的放热峰,对应AP的高温分解阶段,但AP样品的低温分解峰不明显,其原因是本实验所用的AP粒度较小,细AP的内应力较小,生成产物不足以使AP颗粒破裂形成更小的颗粒,初期分解的NH3很快覆盖在小颗粒的表面上,使低温分解过程停止,从而导致低温分解峰不明显[15]。AP/CNTs样品在245.1 ℃出现吸热峰,说明CNTs没有影响AP的晶型转变过程;低温分解峰和高温分解峰重叠,在401.3 ℃出现放热峰,使AP的高温分解过程提前了39.9 ℃,说明CNTs可以有效催化AP的热分解,其原因是CNTs表面的C与AP热分解的气体产物发生反应,对气相反应产生催化作用,且CNTs具有优良的吸附性能,有利于AP分解的气相产物与CNTs的表面接触,从而有效促进AP的热分解[5-6]

图 1 AP及AP/CNTs的DSC曲线 Fig .1 DSC curves of AP and AP/CNTs
3.2 CNTs对NC/NG热分解性能的影响

NC/NG吸收药片及CNTs/NC/NG混合样品的DSC曲线如图 2所示。由图 2可以看出,NC/NG吸收药片及CNTs/NC/NG混合样品的DSC曲线基本相似,均表现为NC/NG双基组分的分解放热峰,其热分解温度分别为208.1 ℃和206.6 ℃,可见CNTs对NC/ NG双基组分的热分解催化作用不大。

图 2 NC/NG及CNTs/NC/NG的DSC曲线 Fig .2 DSC curves of NC/NG and CNTs/NC/NG
3.3 CNTs对AP/CMDB推进剂微观结构的影响

采用SEM对CNTs、AP / CMDB推进剂及含0.5%CNTs的AP/CMDB推进剂样品的微观形貌进行表征,结果如图 3所示。从图 3a可以看出,本研究所用的CNTs外径约30~100 nm,尺寸分布均匀,分散性良好。从图 3b可以看出,在基础配方的AP/CMDB推进剂中,存在一定数量的微裂纹,其原因可能包括以下几个方面:①AP粒度较小,在推进剂中分散不均匀,发生团聚,导致其应力分布不均匀,从而引起推进剂内部产生微裂纹;②Al粉颗粒与粘合剂体系之间的界面特性较差,易引起界面脱粘现象,从而导致微裂纹的产生;③AP、Al粉等填料与粘合剂体系之间的热膨胀不匹配,在工艺过程中由于温度变化产生微裂纹。从图 3c可以看出,添加0.5% CNTs的AP/CMDB推进剂中无明显的微裂纹出现,可见CNTs在AP/CMDB推进剂中起到了明显的增韧作用,原因是CNTs具有较高的韧性(其理论最大延伸率可达20%),且CNTs中空的笼状结构使其在承受外部应力作用时能极大地吸收能量[16],从而在AP/CMDB推进剂粘合剂体系中起到了明显的增韧作用,有效地抑制了微裂纹的扩展。

图 3 CNTs及AP/CMDB推进剂的SEM图 Fig .3 SEM images of CNTs and AP/CMDB propellant
3.4 CNTs对AP/CMDB推进剂燃烧性能的影响

测试了不同CNTs含量的AP/CMDB推进剂样品的燃速,并计算其燃速压强指数,结果见表 1

表 1 CNTs含量对AP/CMDB推进剂燃烧性能的影响 Table1 Effect of CNTs content on the combustion properties of AP/CMDB propellant

表 1可以看出,CNTs可以有效改善AP/CMDB推进剂的燃烧性能,且随着CNTs含量的增加,在10~22 MPa下推进剂的燃速逐渐提高,压强指数逐渐降低。其原因是CNTs具有良好的催化性能和热传导性,其理论导热系数可达3000~6600 W·(m ·K)-1[17-18],可以有效催化AP的热分解过程,并增加推进剂燃烧过程的热传导,从而使AP/CMDB推进剂的燃速提高,且随着CNTs含量增加,其催化性能和热传导性进一步提高,从而推进剂燃速逐渐提高;随着压力升高,CNTs表面吸附的气相产物浓度降低,导致CNTs对AP气相产物的催化作用减弱[5],因此,添加CNTs后推进剂高压下的燃速提高程度减弱,随着CNTs含量增加,高压下CNTs对AP热分解催化作用的减弱程度随之增大,从而导致推进剂压强指数逐渐降低。

3.5 CNTs对AP/CMDB推进剂力学性能的影响

不同CNTs含量的AP/CMDB推进剂在-40,20,50 ℃下的抗冲强度测试结果见表 2

表 2 CNTs含量对AP/CMDB推进剂抗冲强度的影响 Table2 Effect of CNTs content on the impact strength of AP/ CMDB propellant

表 2可以看出,在-40,20,50 ℃下,AP/CMDB推进剂的抗冲强度均随着CNTs含量的增加而增大;这说明添加CNTs可以有效改善AP/CMDB推进剂的力学性能,其原因是CNTs可以有效改善AP/CMDB推进剂的韧性,减少了AP/CMDB推进剂中微裂纹的数量,在AP/CMDB推进剂中加入CNTs后,当药柱受到冲击作用时,其内部产生微裂纹的难易程度增加;且CNTs自身具有高强度和高模量等特点[19],裂纹扩展至CNTs处会发生偏转,沿着CNTs与粘合剂基体的界面扩展,增加了裂纹扩展难度[20],从而较大地改善了AP/CMDB推进剂的力学性能。

4 结论

(1)CNTs可以有效催化AP的热分解,使AP低温分解峰消失,高温分解峰温提前了39.9 ℃,但对NC/ NG双基组分的热分解影响不大。

(2)CNTs可以有效改善AP/CMDB推进剂的燃烧性能,随着CNTs含量的增加,推进剂的燃速提高,压强指数降低,添加0.5%CNTs的AP/CMDB推进剂10 MPa下燃速为61.19 mm·s-1,10~22 MPa压强指数为0.51。

(3)CNTs可以有效改善AP/CMDB推进剂的力学性能,随着CNTs含量的增加,推进剂的抗冲强度增大,添加0.1%、0.3%和0.5% CNTs的AP/CMDB推进剂在-40 ℃下的抗冲强度分别为4.07,4.94 kJ·m-2和5.55 kJ·m-2

参考文献
[1]
邓重清, 李吉祯, 刘晓军, 等. 温度对薄壁管状AP-CMDB推进剂驱溶效果的影响[J]. 火炸药学报, 2014, 37(4): 74-77.
DENG Chong-qing, LI Ji-zhen, LIU Xiao-jun, et al. Influence of temperature on the solvent-removing effect of thin-wall tube-shaped AP-CMDB propellant[J]. Chinese Journal of Explosives and Propellants, 2014, 37(4): 74-77. DOI:10.3969/j.issn.1007-7812.2014.04.015
[2]
滕学锋, 李旭利, 党永战. 改善AP-CMDB高燃速推进剂低温力学性能技术[J]. 火炸药学报, 2004, 27(4): 66-68.
TENG Xue-feng, LI Xu-li, DANG Yong-zhan. An effective technique of improving the mechanical properties of AP-CMDB propellant at low-temperature[J]. Chinese Journal of Explosives and Propellants, 2004, 27(4): 66-68. DOI:10.3969/j.issn.1007-7812.2004.04.018
[3]
邵重斌, 付小龙, 吴淑新, 等. 辅助增塑剂对AP-CMDB推进剂力学性能的影响[J]. 化学推进剂与高分子材料, 2010, 8(6): 50-51.
SHAO Chong-bin, FU Xiao-long, WU Shu-xin, et al. Influence of assistant plasticizers on mechanical properties of AP-CMDB propellants[J]. Chemical Propellants and Polymeric Materials, 2010, 8(6): 50-51. DOI:10.3969/j.issn.1672-2191.2010.06.012
[4]
李旭利, 甘孝贤, 苏艳玲, 等. 黏合剂系统对XLDB推进剂力学性能影响的研究[J]. 推进技术, 1997, 18(3): 98-102.
LI Xu-li, GAN Xiao-xian, SU Yan-ling, et al. Study on the influence of binder on mechanical properties of XLDB propellants[J]. Journal of Propulsion Technology, 1997, 18(3): 98-102. DOI:10.3321/j.issn:1001-4055.1997.03.023
[5]
顾克壮, 李晓东, 杨荣杰. 碳纳米管对高氯酸铵燃烧和热分解的催化作用[J]. 火炸药学报, 2006, 29(1): 48-51.
GU Ke-zhuang, LI Xiao-dong, YANG Rong-jie. Catalytic action on combustion and thermal decomposition of AP with CNTs[J]. Chinese Journal of Explosives and Propellants, 2006, 29(1): 48-51. DOI:10.3969/j.issn.1007-7812.2006.01.014
[6]
崔平, 李凤生, 周建, 等. 碳纳米管/高氯酸铵复合粒子的制备及热分解性能[J]. 火炸药学报, 2006, 29(4): 25-28.
CUI Ping, LI Feng-sheng, ZHOU Jian, et al. Preparation and thermal decomposition behavior of carbon nanotubes / ammonium perchlorate composite particles[J]. Chinese Journal of Explosives and Propellants, 2006, 29(4): 25-28. DOI:10.3969/j.issn.1007-7812.2006.04.007
[7]
李秀秀, 李晓东, 杨荣杰. 碳纳米管/高氯酸铵复合粒子的制备与性能研究[J]. 含能材料, 2004, 12(增刊): 143-146.
LI Xiu-xiu, LI Xiao-dong, Yang Rong-jie. Preparation and performance study of particles of carbon nanotubes ammonium perchlorate composite[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2004, 12(Suppl.): 143-146.
[8]
曾贵玉, 林聪妹, 周建华, 等. 碳纳米管对HMX热分解行为的影响[J]. 火炸药学报, 2012, 35(6): 55-57.
ZENG Gui-yu, LIN Cong-mei, ZHOU Jian-hua, et al. Influence of carbon nanotubes on the thermal decomposition behavior of HMX[J]. Chinese Journal of Explosives and Propellants, 2012, 35(6): 55-57. DOI:10.3969/j.issn.1007-7812.2012.06.013
[9]
于宪峰. 碳纳米管对CL-20热分解性能的影响[J]. 火炸药学报, 2004, 27(3): 78-80.
YU Xian-feng. The effect of carbon nanotubes on the thermal decomposition of CL-20[J]. Chinese Journal of Explosives and Propellants, 2004, 27(3): 78-80. DOI:10.3969/j.issn.1007-7812.2004.03.021
[10]
李晓东, 杨荣杰, 李秀秀, 等. 提高固体推进剂的功能助剂-碳纳米管[C]//. 2004年火炸药学术研讨会论文集, 西安: 西安近代化学研究所, 2004: 228-231.
[11]
Dervishi E, Hategekimana F, Boyer L, et al. The effect of carbon nanotubes and graphene on the mechanical properties of multi-component polymeric composites[J]. Chemical Physics Letters, 2013, 590: 126-130. DOI:10.1016/j.cplett.2013.10.060
[12]
Kharitonov A P, Simbirtseva G V, Tkachev A G, et al. Reinforcement of epoxy resin composites with fluorinated carbon nanotubes[J]. Composites Science and Technology, 2015, 107: 162-168. DOI:10.1016/j.compscitech.2014.12.002
[13]
GJB 770B-2005. 火药试验方法[S].
GJB 770B-2005. Test method of propellant[S].
[14]
刘子如. 含能材料热分析[M]. 北京: 国防工业出版社, 2008: 211-214.
LIU Zi-ru. Thermal analyses for energetic materials[M]. Beijing: National Defend Industry Press, 2008: 211-214.
[15]
刘子如, 阴翠梅, 孔扬辉, 等. 高氯酸铵的热分解[J]. 含能材料, 2000, 8(2): 75-79.
LIU Zi-ru, YIN Cui-mei, KONG Yang-hui, et al. The thermal decomposition of ammonium perchlorate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2000, 8(2): 75-79.
[16]
刘政, 赵素. 碳纳米管增强复合材料研究进展[J]. 宇航材料工艺, 2005, 35(1): 1-5.
LIU Zheng, ZHAO Su. Progress on study of carbon nanotubes reinforced composites[J]. Aerospace Materials & Technology, 2005, 35(1): 1-5. DOI:10.3969/j.issn.1007-2330.2005.01.001
[17]
Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multi walled nanotubes[J]. Physical Review Letters, 2001, 87(21): 1-4.
[18]
Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616. DOI:10.1103/PhysRevLett.84.4613
[19]
范锦鹏, 赵大庆. 多壁碳纳米管/氧化铝复合材料的制备及增韧机理研究[J]. 纳米技术与精密工程, 2004, 2(3): 182-186.
FAN Jin-peng, ZHAO Da-qing. Preparation of MWNTs-Al2O3 ceramics composite[J]. Nanotechnology and Precision Engineering, 2004, 2(3): 182-186. DOI:10.3969/j.issn.1672-6030.2004.03.004
[20]
唐汉玲, 曾燮榕, 熊信柏, 等. 短切碳纤维含量对Csf/SiC复合材料力学性能的影响[J]. 硅酸盐学报, 2007, 35(8): 1057-1061.
TANG Han-ling, ZENG Xie-rong, XIONG Xin-bo, et al. Effect of short carbon fiber content on the mechanical properties of composite Csf/SiC[J]. Journal of the Chinese Ceramic Society, 2007, 35(8): 1057-1061. DOI:10.3321/j.issn:0454-5648.2007.08.021
图文摘要

The effects of CNTs on the thermal decomposition properties of the main components of AP/CMDB propellant and the microstructure of AP/CMDB propellant were studied by DSC and SEM. The effects of CNTs on the combustion and mechanical properties of AP/CMDB propellant were investigated.