文章快速检索     高级检索
  含能材料  2018, Vol. 26 Issue (9): 765-771.  DOI: 10.11943/CJEM2018061
0

引用本文  

蒙君煚, 周霖, 金大勇, 等. 功能助剂对DNAN/RDX熔铸炸药界面黏结强度的影响[J]. 含能材料, 2018, 26(9): 765-771. DOI: 10.11943/CJEM2018061.
MENG Jun-jiong, ZHOU Lin, JIN Da-yong, et al. Effect of Functional Additives on Interface Bonding Strength of DNAN/RDX Melt-cast Explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(9): 765-771. DOI: 10.11943/CJEM2018061.

作者简介

蒙君煚(1987-),男,博士,助理研究员,主要从事高能钝感混合炸药研究。e-mail:mengjunjiong204@163.com

通信联系人

周霖(1962-),男,教授,博士生导师,主要从事炸药应用技术研究。e-mail:zhoulin@bit.edu.cn

文章历史

收稿日期:2018-03-12
修回日期:2018-05-05
网络出版:2018-07-03
功能助剂对DNAN/RDX熔铸炸药界面黏结强度的影响
蒙君煚 1, 周霖 2, 金大勇 1, 牛磊 1, 王亲会 1     
1. 西安近代化学研究所,陕西 西安 710065;
2. 北京理工大学 爆炸科学与技术国家重点实验室,北京 100081
摘要:为了提高2,4-二硝基苯甲醚(DNAN)/黑索今(RDX)熔铸炸药的力学性能,用分子动力学的方法模拟了功能助剂N-甲基-4-硝基苯胺(MNA)、吐温60(Tween60)、三-(β氯乙基)磷酸酯(CEF)、乙酸丁酸纤维素(CAB)对界面结合能的影响规律;采用粉体接触角法和白金板法测定接触角及表面张力,通过计算黏附功对模拟结果进行了验证;采用巴西实验及扫描电镜(SEM)分别从宏观及微观尺度对黏附功实验进行验证。结果表明,功能助剂对DNAN/RDX界面结合能改变能力大小由高到低排序为CAB>CEF> Tween60>MNA,试验结果与数值模拟结果吻合;功能助剂CAB、CEF、Tween 60、MNA可使DNAN/RDX炸药的抗拉强度分别提高58.37%,47.85%,29.71%,5.83%;随着黏附功的增加,药柱断裂模式由穿晶/沿晶混合断裂向纯粹穿晶断裂转变。
关键词2,4-二硝基苯甲醚(DNAN)     功能助剂     黏附功     抗拉强度     断裂模式    
Effect of Functional Additives on Interface Bonding Strength of DNAN/RDX Melt-cast Explosives
MENG Jun-jiong 1, ZHOU Lin 2, JIN Da-yong 1, NIU Lei 1, WANG Qin-hui 1     
1. Xi' an Modern Chemistry Research Institute, Xi' an 710065, China;
2. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract: To improve the mechanical property of 2, 4-dinitroanisole(DNAN)/RDX melt-cast explosives, the effect of functional additives, N-methyl -4-nitroaniline(MNA), Tween 60, tris-(β-chloroethyl)fosfat(CEF)and cellulose acetate butyrate(CAB) on the interfacial binding energy was simulated by molecular dynamics. The powder contact angle method and platinum plate method were used to measure the contact angle and surface tension, and the simulation results were verified by calculating the adhesion work. The experiments of adhesion work were verified from macroscopic and microscopic scales by Brazilian experiments and scanning electron microscopy(SEM), respectively. Results show that the order of change ability of functional additives on DNAN/ RDX interfacial binding energy from high to low is CAB>CEF>Tween 60>MNA, and the experimental results agree well with the numerical simulation ones. Functional additives, CAB, CEF, Tween 60 and MNA can make the tensile strength of DNAN/RDX explosive increase by 58.37%, 47.85%, 29.71% and 5.83%, respectively. With the increase of adhesion work, the fracture mode of grain is changed from transgranular/intergranular mixed fracture to pure transgranular fracture.
Key words: 2, 4-dinitroanisole(DNAN)    functional additives    adhesion work    tensile strength    fracture mode    
1 引言

熔铸炸药是目前各国在军事上广泛应用的一类炸药,大量用于各种榴弹、破甲弹、航弹、导弹战斗部等装药[1-2]。由于其属于脆性材料,力学性能差,因此在生产、运输和使用过程中容易产生损伤破坏,导致炸药意外起爆。熔铸炸药的力学性能不仅取决于载体炸药和高能固相炸药,而且与二者之间的界面结合强度密切相关。在配方确定的前提下,炸药颗粒与载体炸药两相间的界面结合状况是影响熔铸炸药力学性能的关键因素,这就要求基体炸药对高能固相炸药颗粒具有良好的润湿性。在熔铸炸药中添加一定量的功能助剂可以改善固液界面润湿性,提高药柱的力学性能。许多文献报道[3-10],在B炸药(TNT/RDX 40/60)中加入橡胶纳米微球、聚合物纤维和热塑性弹性体等功能助剂,能增强2,4,6-三硝基甲苯(TNT)与黑索今(RDX)晶体间的界面作用,改善B炸药的韧性和弹性,提高力学和安全性能,而爆轰性能的降低也在允许范围内。

2,4-二硝基苯甲醚(DNAN)是当前国内外研究最为活跃的一种新型熔铸不敏感载体炸药,近年来,美国[11-16]、澳大利亚[17-19]、波兰[20]、挪威[21-22]等国积极开展DNAN基熔铸炸药技术研究,并成功研制出多种配方,其中一些配方的装药生产线已建成并投产,为DNAN基熔铸炸药的应用奠定了基础。然而,关于功能助剂对DNAN/RDX熔铸炸药界面作用的影响目前研究较少。蒙君煚等[23]研究了功能助剂对DNAN/HMX(20/80)熔铸炸药的拉伸强度、剪切强度、撞击感度、摩擦感度、冲击波感度和装药密度的影响规律,结果表明,脱水山梨醇单硬脂酸酯聚氧乙烯醚(Tween60)和乙酸丁酸纤维素(CAB)可以改善DNAN/HMX熔铸炸药的力学性能和安全性能。Wen等[24]采用数值模拟与实验相结合的方法研究了界面强度对DNAN/RDX炸药力学性能的影响,结果表明,季戊四醇丙烯醛树脂(APER)可以在DNAN与RDX之间形成高强度的界面作用,从而增加DNAN/RDX炸药的机械强度和韧性。

为了提DNAN/RDX熔铸炸药的力学性能,本研究选取功能助剂N-甲基-4-硝基苯胺(MNA)、Tween60、三-(β氯乙基)磷酸酯(CEF)、CAB为研究对象,采用分子动力学(MD)方法模拟了4种功能助剂对DNAN/RDX界面结合能的影响规律;测试了固液接触角及表面张力,利用Young方程计算了黏附功,从细观尺度对数值模拟进行验证;最后采用巴西实验及扫描电镜对黏附功实验分别进行宏观及微观尺度验证。

2 实验部分 2.1 试剂与仪器

DNAN,工业级,湖北东方化工有限公司;RDX,工业级,甘肃银光化学工业集团;MNA,工业级,东方化工集团有限公司;Tween60,分析纯,北京益利精细化学品有限公司;CEF,分析纯,上海彭海化工厂;CAB,工业级,九鼎化学科技有限公司。

上海JK99C全自动张力仪;美国DV-3博勒飞数字黏度计;上海JF99AX粉体接触角测量仪;捷克MIRA3 XM型扫描电子显微镜;美国CMT4502万能试验压力机。

2.2 粉体接触角测试

根据Washburn[25]方程可知,若液体由于毛细作用渗入半径为r的毛细管中,液体渗透过程中压缩粉体床中的气体而引起的压力差的平方(Δp2是时间t的函数,其方程为:

$ {\left( {\Delta p} \right)^2} = \frac{{\beta \gamma \cos \theta }}{\eta }t $ (1)

式中,γ为液体的表面张力,mN·m-1β为与粉体床自身的性质有关的参数;η为液体的黏度,mPa·s;θ为接触角,°。

作出(Δp2-t关系图,得到一条近似的线性直线,求出斜率K

$ K = \frac{{\beta \gamma \cos \theta }}{\eta } $ (2)

由式(2)可知,测量接触角时,必须得到ηγβ。其中β与颗粒自身性质有关,可由其它测试液得到。选取二碘甲烷作为测试液,得到RDX颗粒的β值为205.43。DNAN的熔点为94~96 ℃,所以在测量DNAN及DNAN+功能助剂的表面张力与黏度时,必须对DNAN进行加热至熔化,选取100 ℃为测试温度。

为了保证接触角尽可能准确,在测量过程中必须保证装填密度相同。每一种接触角的测定至少进行五次平行试验,以消除“滞后”效应[26]。同时,为了去除RDX颗粒中的水分,首先在室温环境中风干18 h,然后转移到真空干燥箱中在90 ℃温度下干燥2 h。

2.3 表面张力测试

表面张力的测量采用铂金板法[27]。当感测铂金板浸入到被测液体中后,其周围会受到表面张力的作用,受向下拉力。当液体表面张力及其他相关的力与平衡力达到平衡时,铂金板停止运动。此时,通过测量浸入深度,并经过专用分析软件处理及微处理器的一系列运算,转化成表面张力值。

2.4 抗拉强度测试

采用巴西实验法测试药柱的抗拉强度,如图 1所示。根据弹性理论,材料中心点的抗拉强度由下列公式计算[28]

图 1 巴西实验加载示意图 Fig .1 Loading geometry of Brazilian disc test
$ \sigma = \frac{{2F}}{{{\rm{ \mathsf{ π} }}D\delta }} $ (3)

式中,σ为试样抗拉强度,Pa;δ为试件的厚度,m;D为试样直径,m;F为最大载荷,N。

将DNAN/RDX炸药加工成Φ40 mm×10 mm的药柱,用于抗拉强度测试,见图 2;加载速度5 mm·min-1,每个配方进行5次平行实验。

图 2 抗拉实验样品形状 Fig .2 Sample shape of tensile test
3 界面体系的分子动力学模拟 3.1 RDX晶体形态构建

根据晶体衍射实验的结果可知(均采用最稳定晶型),RDX[29]晶体结构属斜方晶系,Pbca空间群,其晶胞参数为:a=13.182Å,b=11.574Å,c=10.709Å,Z=8。根据以上数据构建RDX的晶胞,用Forcite模块COMPASS力场对其进行Molecular Mechanics(MM)优化,见图 3。接着,将优化好的晶胞结构运用Morphology模块中的Growth Morphology方法进行晶体形态的模拟,得到RDX晶体(见图 4a)以及5种重要晶面,分别为(0 2 0)、(2 1 0)、(0 0 2)、(1 1 1)和(2 0 0),如表 1所示。

图 3 RDX的晶胞结构 Fig .3 Cell structure of RDX
图 4 RDX晶体模拟结果与实验结果 Fig .4 Simulated and experimental results of RDX crystal
表 1 RDX晶体的重要晶面 Table1 Important crystal faces of RDX crystal

图 4可知,模拟得到的RDX晶体形状与本文实验中使用的RDX晶体形状相似。由表 1可知,RDX晶体各重要晶面的几何形状和结构参数各不相同。根据晶体生长形态理论,造成这种形态差异的主要原因是各晶面生长速率不同,而生长速率又与附着能相关。(1 1 1)面的面积百分比最大,(2 0 0)面的面积百分比最小。(1 1 1)、(0 2 0)、(2 1 0)、(0 0 2)的面积百分比远大于其他晶面,其面积总和也超过92%,因此这4个晶面必然成为影响RDX晶体表面性质最为重要的晶面。

3.2 DNAN及功能助剂模型的构建

功能助剂选取种类不同,其中包含有小分子与大分子化合物,而用于MD模拟的晶体晶面面积在30 Å×30 Å之内,如果功能助剂分子链的长度明显超出这个范围,则会导致运行过程中分子链两端严重超出周期性结构而使模拟结构失真。因此,功能助剂分子链的长度也应该在这个范围。根据其结构单元分子量大小的不同,大分子化合物(如CAB),选择合适的链段数,使其在体系中的质量分数占2%~5%(本文选取3段重复链段数),搭建其结构模型并用特定基团对末端进行饱和处理;小分子化合物(如MNA、Tween60、CEF),则建立完整分子结构模型。

将处理好的功能助剂模型在Forcite模块下的COMPASS力场下进行MD模拟,选取isothermalisochoric(NVT)系统,温度设定为373 K,采用Andersen控温方法[30],时间步长为1 fs,总模拟步数为200000步,选择最终结构作为平衡构象。

3.3 界面体系模型的构建

将RDX晶体的重要晶面进行3个分子层厚度的重新切割,并在UV方向上增加重复单元,建立起含有3×3×3结构的超晶胞,同时在C方向增加厚度为60 Å的真空层,然后将DNAN或功能助剂的平衡链置于各晶面结构的真空层上,使用Forcite模块在COMPASS力场下进行MM优化后即可,如图 5所示。该模型通过两次MD模拟后可用于界面体系结合能的计算。

图 5 界面体系模型(RDX(1 1 1)/CAB) Fig .5 Interfacial system model (RDX(1 1 1)/CAB)

其中,MD模拟是指运用Forcite模块,在COMPASS力场下选择NVT系统、Andersen控温方法,温度设定为373 K,时间步长1 fs,总模拟时间为1 ps(100 fs)对选定模型进行总模拟步数为100000步的模拟。然后选择上述模拟过程的最终构象作为初始计算模型,在相同的参数设置下再进行一次100000步的MD模拟,每50步保存一次轨迹文件,共保存2000帧,选取其中能量较低的5帧进行后续的计算和分析,最后取其平均值。

4 结果与讨论 4.1 DNAN/RDX熔铸炸药界面结合能模拟结果

根据界面吸附理论,DNAN或功能助剂分子包覆在RDX炸药晶体表面,两者的极性基团彼此相互靠近,在外界某些条件(如升温、增压等)的作用下,能更加利于极性基团的彼此靠近、缔合,产生分子间相互作用力,包括静电力、范德华力、氢键等,而整个黏附过程实际上主要是一个物理吸附过程。

在界面体系中,DNAN或功能助剂与晶体炸药表面的相互作用能(Einter)可表示为:

$ {E_{{\rm{bin}}\;{\rm{ding}}}} = - {E_{{\rm{inter}}}} = {E_{{\rm{total}}}} - ({E_{{\rm{explosive}}}} + {E_{{\rm{additive}}}}) $ (4)

式中,Etotal为界面体系的总能量,kJ·mol-1EexplosiveEadditive分别表示晶体炸药和功能助剂的能量,kJ·mol-1Ebinding为结合能,是相互作用能的相反数,即Ebinding=-Einter。作为相互作用强弱的度量,值越大表示组分间相互作用越强,因而形成的体系越稳定,润湿效果越好。

通过式(4),计算RDX的重要晶面与DNAN及各功能助剂的单位面积结合能,结果见表 2

表 2 RDX重要晶面与DNAN、功能助剂单位面积的结合能 Table2 The binding energy of unit area between the important crystal faces of RDX and DNAN, functional additives

表 2可知,功能助剂与RDX之间的结合能存在明显差异。这种差异主要体现在两方面:(1)同一功能助剂与RDX不同晶面的结合不均匀;功能助剂表现为与(0 2 0)面结合较好,与(2 1 0)面结合较差。(2)不同功能助剂与RDX同一晶面的结合能大小不等。整体比较,界面结合能强度由高至低排序为CAB>CEF >Tween60>MNA>DNAN。

4.2 功能助剂对DNAN/RDX熔铸炸药黏附功的影响

黏附功Wa表示将单位面积的A相和B相界面分离为A相和B相两个与气相交界的表面时所需要的功[31]。显然,Wa越大,说明A相与B相结合得越牢固,对形成有效和高性能的黏结结构越有利。

在润湿性研究中,固液相黏附功与接触体系的润湿状态密切相关。固液两相黏附功的表达式为[32]

$ {W_{\rm{a}}} = {\gamma _{\rm{s}}} + {\gamma _{\rm{l}}} - {\gamma _{{\rm{s - l}}}} $ (5)

式中,γs为固相表面自由能,mJ∙m-2γl为液相表面张力,mN∙m-1γs-l固液界面自由能,mJ∙m-2

根据Young方程[33]

$ {\gamma _{{\rm{s - l}}}} = {\gamma _{\rm{s}}} - {\gamma _{\rm{l}}}\cos \theta $ (6)

式中,θ为固液相接触角,(°)。

联合式(5)与式(6),得到固液两相的黏附功为:

$ {W_{\rm{a}}} = {\gamma _{\rm{l}}}\left( {1 + \cos \theta } \right) $ (7)

本研究每种功能助剂添加的质量分数为2%。根据式(2)及式(7),首先对DNAN、DNAN+功能助剂的表面张力及黏度进行了测试,结果见表 3;接着测试了DNAN/RDX、(DNAN+功能助剂)/RDX的接触角,最后计算得到界面黏附功,结果见表 4

表 3 DNAN、DNAN+功能助剂的表面张力及黏度测试结果(100 ℃) Table3 Testing results of the surface tension and viscosity of DNAN and(DNAN + functional)additives at 100 ℃
表 4 DNAN/RDX、(DNAN+功能助剂)/RDX的接触角与黏附功(100 ℃) Table4 Contact angle and adhesion work of DNAN / RDX and(DNAN + functional additives)/RDX at 100 ℃

表 4可知:(1)在DNAN中加入相同含量的功能助剂时,DNAN与RDX界面接触角均减小,其中加入表面活性剂Tween60时,接触角减小最明显;(2)当加入相同含量的功能助剂CAB、CEF、Tween60、MNA时,DNAN / RDX炸药的界面黏附功分别提高了46.47%、31.99%、26.29%、14.66%,各功能助剂对DNAN/RDX界面黏附功改变由高至低的排序为CAB >CEF>Tween60>MNA。因此,实验结果与模拟结果一致。

4.3 功能助剂对DNAN /RDX熔铸炸药抗拉强度的影响

为了从宏观尺度对界面黏附功进行验证,以DNAN/RDX(40/60)为基础,采用巴西实验测试加入0.8%功能助剂时药柱的抗拉强度,结果见表 5

表 5 5种熔铸炸药配方的抗拉强度 Table5 Tensile strength of five melt‑cast formulations

表 5可知,当加入相同含量的功能助剂CAB、CEF、Tween60、MNA时,DNAN /RDX炸药的抗拉强度分别提高了58.37%、47.85%、29.71%、5.83%。因此,功能助剂对抗拉强度的影响规律与其对黏附功影响规律一致,即CAB>CEF>Tween60>MNA。炸药固液界面黏附功与装药力学性能之间存在内在联系,即黏附功越大则药柱的抗拉强度越大。

为了进一步对黏附功实验结果进行验证,采用扫描电镜对巴西实验后DNAN/RDX药柱的裂纹扩展路径及断口形貌进行微观分析,实验结果见图 6

图 6 5种熔铸炸药配方的扫描电镜结果 Fig .6 SEM image results of five melt‑cast formulations

图 6a可知,当DNAN/RDX熔铸炸药中没有任何功能助剂时,断口凹凸不平;由于界面黏附功较小,断口存在大量RDX颗粒被直接从凝固的DNAN中直接拉出的现象。裂纹扩展时沿着较大的RDX颗粒边缘延伸,只有极少量RDX颗粒被贯穿。

图 6b可知,当熔铸炸药中加入MNA时,断口凹凸不平的现象有所改善;随着界面黏附功增加,熔融的DNAN对RDX颗粒润湿性改变,断口虽然还存在RDX颗粒被直接从凝固的DNAN中拉出的现象,但是RDX大颗粒被拉出的数量明显减少。裂纹扩展时小部分RDX颗粒被直接贯穿。

图 6c可知,当熔铸炸药中加入Tween60时,随着界面处黏附功增加,熔融的DNAN对RDX颗粒包覆较好,断口处RDX大颗粒被直接从凝固的DNAN中直接拉出的现象进一步减少,但是断面仍然凹凸不平,说明存在RDX小颗粒被直接拉出。裂纹扩展时RDX颗粒大部分被贯穿。

图 6d可知,当熔铸炸药中加入CEF时,与图 6c相比较,断口处已经不存在RDX大颗粒被直接从凝固的DNAN中直接拉出的现象,但是还存在RDX小颗粒被拉出。裂纹扩展时RDX颗粒几乎全部被贯穿。

图 6e可知,当熔铸炸药中加入CAB时,界面处黏附功进一步增加,熔融的DNAN对RDX颗粒包覆性能增加,界面成为一个整体;断口也不存在RDX颗粒被直接从凝固的DNAN中直接拉出的现象,断口基本平整。裂纹扩展时RDX颗粒也全部被贯穿。

以上研究表明,随着黏附功的增加,DNAN/RDX炸药界面结合强度增加,炸药的断裂模式由穿晶/沿晶混合断裂向纯粹穿晶断裂转变。

5 结论

(1)利用MD方法从分子水平上研究功能助剂与RDX的界面作用强度,结果表明界面结合能强度由高至低排序为CAB>CEF>Tween60>MNA>DNAN。通过计算界面黏附功对模拟结果进行验证,表明实验结果与模拟结果一致。

(2)当加入相同含量的功能助剂时,其对抗拉强度的影响规律与对黏附功影响规律一致,即CAB> CEF>Tween60>MNA。揭示了DNAN基熔铸炸药界面黏附功与药柱力学性能之间的关联特性,即黏附功越大,则药柱的抗拉强度越大。

(3)黏附功的增加改变了DNAN基熔铸炸药的断裂模式。随着黏附功的增加,药柱裂纹扩展路径不再沿着颗粒的边缘,而是直接贯穿颗粒内部;药柱断裂模式由穿晶/沿晶混合断裂向纯粹穿晶断裂转变。

参考文献
[1]
孙业斌, 惠君明, 曹欣茂. 军用混合炸药[M]. 北京: 兵器工业出版社, 1995: 119-120.
SUN Ye-bing, HUI Jun-ming, CAO Xin-mao. Military composite explosive[M]. Beijing: Ordnance Industry Press, 1995: 119-120.
[2]
孙国祥, 陈鲁祥. B炸药的品种组成和性能[J]. 火炸药学报, 1989, 12(1): 15-21.
SUN Guo-xiang, CHEN Lu-xiang. The variety constituents and performance of Composition B[J]. Chinese Journal of Explosives & Propellants, 1989, 12(1): 15-21.
[3]
黄亨建, 董海山, 张明. 高聚物改性B炸药(Ⅱ)[J]. 含能材料, 2005, 13(1): 7-9.
HUAN Heng-jian, DONG Hai-shan, ZHAN Ming. Researchon modification of composition B with polymers(Ⅱ)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(1): 7-9. DOI:10.3969/j.issn.1006-9941.2005.01.003
[4]
徐瑞娟, 罗宏, 王新锋. 改性B炸药中添加剂的作用机理[J]. 火炸药学报, 2003, 26(2): 5-7.
XU Rui-juan, LUO Hong, WANG Xin-feng. Effect of additives on the modified composition B[J]. Chinese Journal of Explosives & Propellants, 2003, 26(2): 5-7. DOI:10.3969/j.issn.1007-7812.2003.02.003
[5]
马卿, 舒远杰, 罗观. TNT基熔铸炸药:增韧增弹的途径及作用[J]. 含能材料, 2012, 20(5): 618-629.
MA Qing, SHU Yuan-jie, LUO Guan. Toughening and elasticizing route of TNT based melt cast explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012, 20(5): 618-629. DOI:10.3969/j.issn.1006-9941.2012.05.022
[6]
罗观, 黄勇, 张明, 等. 分散剂在熔黑梯炸药中的应用研究[J]. 含能材料, 2004(增刊): 82-85.
LUO Guan, HUANG Yong, ZHANG Ming, et al. Application research on dispersant of composition B[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2004(Suppl.): 82-85.
[7]
高大元, 蓝林钢, 温茂萍, 等. 改性B炸药的力学性能[J]. 含能材料, 2014, 22(3): 359-364.
GAO Da-yuan, LAN Lin-gang, WEN Mao-ping, et al. Mechanical Properties of Modified Composition B[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(3): 359-364. DOI:10.3969/j.issn.1006-9941.2014.03.016
[8]
Vlick R W. Effect of TNT miscible additives on the mechanical behavior and shock sensitivity of composition B [R]. ARAED-TR-88031, Army Armament Research and Development Center, Dover, United Kingdom, 1989.
[9]
Voigt H W, Stanhope R. Castable TNT compositions containing abroad spectrum preformed thermoplastic polyurethane elastomer additive: US4284442[P], 1981.
[10]
Jawaid M, Abdul KHPS. Cellulosic/synthetic fiber reinforced polymer hybrid composites:A review[J]. Carbohydrate Polymers, 2011, 86(1): 1-18. DOI:10.1016/j.carbpol.2011.04.043
[11]
Brian R. The characterization of IM explosive candidates for TNT replacement[C]//2007 IM/EM Technology symposium. Florida, USA, 2007.
[12]
Jim R. Common low cost IM explosive program to replace TNT [C]//2007 IM/EM Technology symposium. Florida, USA, 2007.
[13]
Pierre P, Daniel L, Isabelle. Additional properties studies of DNAN based Melt-Pour explosive formulation[C]//2010 IM/EM Technology symposium. Munich, Germany, 2010.
[14]
Fung V, Schreiber B. Process improvement and optimization of insensitive explosive IMX-101[C]//2012 IM/EM Technology symposium. Florida, USA, 2012.
[15]
Fung V. Development and manufacture of an insensitive composition B replacement explosive IMX-104 for mortar application[C]//2010 IM/EM Technology symposium. Munich, Germany, 2010.
[16]
Pelletier P, Laroche I, Lavigne D, et al. Processing studies of DNAN based melt-pour explosive formulations[C]//2009 IM/EM Technology symposium. Tucson, USA. 2009.
[17]
Davies P J, Provatas A. Characterization of 2, 4-dintroanisole: an ingredient for use in low sensitivity melt cast formulations [R]. DSTO-TR-1904,, Defence Science and Technology Organisation, Melbourne, Australian 2006.
[18]
Davies P J, Provatas A. DNAN: A replacement for TNT in melt-cast formulations[C]//2006 IM/EM Technology symposium. Orlando, Bristol, United Kingdom, 2006.
[19]
Provatas A, Wall C. Thermal testing of 2, 4-dinitroanisole (DNAN) as a TNT replacement for melt-cast explosive[C]// 42th International Annual Conference of ICT. Karlsruhe, 2011.
[20]
Trzciński W, Cudziło S, Dyjak S, et al. A comparison of the sensitivity and performance characteristics of melt-pour explosives with TNT and DNAN binder[J]. Central European Journal of Energetic Materials, 2014, 11(3): 443-455.
[21]
Gunnar O N. MCX-6100 CH 6027/14 characterization[R]. FFI-rapport 2015/02185, Norwegian Defence Research Establishment, Kjeller, Norwegian, 2015.
[22]
Gunnar O N. Determination of detonation velocity and pressure forMCX-6100[R]. FFI-rapport 2015/02323, Norwegian Defence Research Establishment, Kjeller, Norwegian, 2015.
[23]
蒙君煚, 姜振明, 张向荣, 等. 功能助剂对2, 4-二硝基苯甲醚基熔铸炸药性能的影响[J]. 兵工学报, 2016, 37(3): 424-430.
MENG Jun-jiong, JIANG Zhen-ming, ZHANG Xiang-rong, et al. Effect of functional agents on the performance of 2, 4-dinitroanisole-based melt-cast explosives[J]. Acta Armamentarii, 2016, 37(3): 424-430. DOI:10.3969/j.issn.1000-1093.2016.03.006
[24]
Qian W, Chen X Z, Luo G. Polymer reinforced DNAN/RDX energetic composites:interfacial interactions and mechanical properties[J]. Central European Journal of Energetic Materials, 2017, 14(3): 726-741. DOI:10.22211/cejem/75609
[25]
Siebold A, Walliser A, Nardin M, et al. Capillary rise for thermodynamic characterization of solid particle surface[J]. Journal of Colloid and Interface Science, 1997, 186(1): 60-70. DOI:10.1006/jcis.1996.4640
[26]
宋华杰, 董海山, 郝莹. TATB、HMX与氟聚合物的表面能研究[J]. 含能材料, 2000, 8(3): 104-107.
SONG Hua-jie, DONG Hai-shan, HAO Ying. Study on the surface energies of TATB, HMX and fluor-polymers[J]. Chinese Jouranl Energetic Materials(Hanneng Cailiao), 2000, 8(3): 104-107. DOI:10.3969/j.issn.1006-9941.2000.03.003
[27]
YIN D, MA P, XIA S. Progress on methods for measuring surface tension of liquids[J]. Bulletin of Science and Technology, 2007, 3(23): 424-433.
[28]
Awaji H, Sato S. Diametral compressive testing method[J]. Journal of Engineering Materials and Technology, 1979, 101(2): 139-147. DOI:10.1115/1.3443665
[29]
Choi C S, Prince E. The crystal structure of cyclotrimethylene-trinitramine[J]. Acta Crystallographica B, 1972, 28(9): 2857-2862. DOI:10.1107/S0567740872007046
[30]
Xiao J, Huang H, Li J, et al. A molecular dynamics study of interface interactions and mechanical properties of HMX-based PBXs with PEG and HTPB[J]. Journal of Molecular Structure: Theochem, 2008, 851(1-3): 242-248. DOI:10.1016/j.theochem.2007.11.021
[31]
张福田. 分子界面化学基础[M]. 上海: 上海科学技术文献出版社, 2006: 315-317.
ZHANG Fu-tian. Fundamentals of molecular interface chemistry[M]. Shanghai: Shanghai Scientific and Technical Literature Publishing House, 2006: 315-317.
[32]
Zhang X L, Liu M E, Liu W Z, et al. Synthesis and interfacial adhesion interaction of borate ester bonding agents used for HTPB propellants[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(5): 814-821. DOI:10.1002/prep.v41.5
[33]
Schrader E M. Young-Duprerevisited[J]. Langmuir, 1995, 11(9): 3585-3589. DOI:10.1021/la00009a049
图文摘要

To improve the mechanical property of DNAN/RDX melt-cast explosives, the effect of MNA, Tween 60, CEF and CAB on the interfacial binding energy was simulated by molecular dynamics. The powder contact angle method and platinum plate method were used to measure the contact angle and surface tension, and the simulation results were verified by calculating the adhesion work. The experiments of adhesion work were verified from macroscopic and microscopic scales by Brazilian experiments and scanning electron microscopy(SEM), respectively.