1.西南科技大学材料与化学学院;2.中国工程物理研究院化工材料研究所;3.重庆大学化学化工学院
国家自然科学基金(22375191);CAEP院长基金(YZJJZQ2023005)
1.School of Materials and Chemistry,Southwest University of Science and Technology;2.Institute of Chemical Materials,China Academy of Engineering Physics;3.School of Chemistry and Chemical Engineering,Chongqing University
Grant support: National Natural Science Foundation of China(No. 22375191);Presidential Foundation of CAEP(No. YZJJZQ2023005)
朱金灿,王超,曹洪滔,等.基于机器学习的超细HNS固相熟化预测模型[J].含能材料, 2025, 33(6):625-634. DOI:10.11943/CJEM2025060.
ZHU Jin-can, WANG Chao, CAO Hong-tao, et al. Solid-Phase Ripening Prediction Model for Ultrafine HNS based on Machine Learning[J]. Chinese Journal of Energetic Materials, 2025, 33(6):625-634. DOI:10.11943/CJEM2025060.