文章编号: 1006-9941(2017)03-0262-03

Synthesis and Properties of 4,6-Dinitrobenzotriazol-3-dinitromethyl-1-oxide

 $HUO\ Huan^1$, $LIAN\ Peng^1$, $ZHAI\ Lian-jie^1$, $LI\ Ya-nan^1$, $WANG\ Bo-zhou^{1,2}$, $BI\ Fu-qiang^{1,2}$

(1. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China; 2. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an 710065, China)

Abstract: Using 4,6-dinitrobenzotriazol-3-ium-1-oxide (DNBTO) as starting material, 4,6-dinitrobenzotriazol-3-dinitromethyl -1-oxide (TNBTO) was firstly designed and synthesized via the reactions of metathesis, substitution and nitration-hydrolysis. The structures of all compounds were characterized by 1 H NMR, 13 C NMR, IR and element analysis. Based on the theoretical values of densities and heat of formation, the detonation parameters were calculated using Gaussian 09 program and Kamlet-Jacobs equations. Results show that the density of TNBTO is 1.81 g \cdot cm⁻³, and the heat of formation is 143.7 kJ \cdot mol⁻¹, the detonation velocity and detonation pressure are 8161.2 m \cdot s⁻¹ and 30.2 GPa, respectively. However, thin layer chromatography shows that TNBTO easily decomposes at room temperature, indicating that its stability is relatively poor.

Key words: 4,6-dinitrobenzotriazol-3-dinitromethyl-1-oxide(TNBTO); synthesis; properties

CLC number: TJ55; O62

Document code: A

DOI: 10.11943/j. issn. 1006-9941. 2017. 03. 015

1 Introduction

N-oxides have been extensively studied in the field of energetic materials^[1-2]. Recently, the benzotriazol-3-ium-1-oxide compounds have attracted more attentions owing to their low sensitivities towards shock, friction, heat and electrostatic discharge^[3]. For example, 4,6-dinitrobenzotriazol-3-ium-oxide (DNBTO) was identified as a kind of potential explosive with the high-performance and insensitivity. It has some desirable traits, including a low impact sensitivity (20 J), and a low friction sensitivity (>360 N)^[4]. In order to search for the novel energetic derivatives with higher energy than DNBTO, a novel compound, 4, 6-dinitrobenzotriazol-3-dinitromethyl-1oxide(TNBTO) was designed and synthesized from DNBTO. Comparing with DNBTO, TNBTO exhibits higher density and detonation velocity because of the introduce of a dinitromethyl group^[5-9]. In view of the above observations, the detailed studies of the synthesis and characterization of TNBTO were carried out in this work. In addition, the detonation parameters and stability were investigated.

2 Experimental

2.1 Materials and Instruments

4, 6-Dinitrobenzotriazol-3-ium-1-oxide (DNBTO) was

Received Date: 2016-11-28; Revised Date: 2016-12-27

Project Supported: National Natural Science Foundation of China (21373157)
Biography: HUO Huan (1984-), female, research field: the synthesis of ener-

getic materials, e-mail: huohuan-234@163.com

Corresponding Author: WANG Bo-zhou(1967-), male, professor, majoring in synthesis and property of energetic materials, e-mail: wbz600@163.com

prepared and purified according to the reference $^{[10]}$, and other reagents were purchased from the commercial sources. 1 H NMR and 13 C NMR were obtained in DMSO- d_6 on a Bruker AV500 NMR spectrometer. Infrared spectra were obtained from KBr pellets on a Nicolet NEXUS870 Infrared spectrometer in the range of $4000-400~{\rm cm}^{-1}$. Elemental analyses (C, H and N) were performed on a VARI-EI-3 elemental analyzer.

2.2 Synthesis and Characterization

Using 4,6-dinitrobenzotriazol-3-ium-1-oxide (DNBTO) as starting materials, the title compound TNBTO was firstly synthesized via the reactions of metathesis, substitution and nitration-hydrolysis (Scheme 1).

2.2.1 Potassium 4,6-Dinitrobenzotriazol-3-ium-1-Oxide

DNBTO(1.0 g, 4.44 mmol) was dissolved in 80 mL ethanol, and then potassium hydroxide (0.25 g, 4.46 mmol) dissolved in a minimal amount of water was added dropwise at 40 °C. The solution was stirred at 40 °C for other 2 h. After evaporation of the solvent, the residue was washed with diethyl ether, and dried to give 1.0 g purple solid with a yield of 85.5%. IR(KBr, ν/cm^{-1}):3106, 2398, 1765, 1643, 1559, 1508, 1438, 1384, 1341, 1189, 1157, 1055, 983, 933, 885, 826, 806. ¹H NMR (DMSO- d_6 , 500 MHz), δ : 9.096 (1H, CH), 8.880(1H, CH); ¹³C NMR(DMSO- d_6 , 125 MHz), δ : 144. 830, 137. 430, 136. 783, 130. 260, 117. 535, 115.295; Anal. Calcd. for C_6H_2 $N_5O_5K(\%)$: C 27.38, H 0.77, N 26.61; Found: C 27.41, H 0.83, N 26.32.

2.2.2 4,6-Dinitrobenzotriazol-3-Acetone-1-Oxide

Potassium bromide (0.5 g, 4.2 mmol) and potassium 4,

6-dinitrobenzotriazol-3-ium-1-oxide(0.95 g, 3.6 mmol) were dissolved in 80 mL acetone at ambient temperature. To the reaction mixture, chloroacetone(0.38 g, 4 mmol) was added dropwise. The solution was stirred for 8 h at 58 $^{\circ}$ C. After evaporation of the solvent, the residue was washed with water and diethyl ether, and dried to give 0.41 g orange solid with a yield of 40.5% and a purity of 99.2% (HPLC). IR(KBr, ν / cm⁻¹): 3444, 3097, 2986, 2938, 2869, 1745, 1632, 1601,

4534, 1488, 1401, 1371, 1344, 1281, 1234, 1184, 1169, 1101, 1067, 1020, 998, 935, 911, 805; 1 H NMR(DMSO- d_{6} , 500 MHz), δ : 9. 370 (1H, CH), 8. 938 (1H, CH), 5. 603 (2H, CH₂), 2. 147 (3H, CH₃); 13 C NMR (DMSO- d_{6} , 125 MHz), δ : 202.223, 146.033, 137.988, 137.217, 117.602, 115.371, 84.192, 26.524; Anal. Calcd. for C₉H₇ N₅ O₆(%): C 38. 44, H 2. 51, N 24. 91; Found: C 38. 40, H 2.75, N 24.82.

Scheme 1

2. 2. 3 4, 6-Dinitrobenzotriazol-3-Dinitromethyl-1-Oxide (TNBTO)

4,6-Dinitrobenzotriazol-3-acetone-1-oxide was dissolved in 5 mL 98% sulfuric acid. To the reaction mixture, 65% nitric acid(3.9 mL, 54 mmol) was added dropwise at −5 °C. The solution was stirred for 6 h at 40 °C. Then the reaction mixture was poured into ice water. The yellow precipitate was filtered to obtain 1.0 g solid with a yield of 52.6%. IR (KBr, ν /cm⁻¹): 3422, 3105, 2289, 1603, 1543, 1489, 1346, 1296, 1233, 1174, 1121, 1065, 1000, 934, 910, 847, 804, 776; ¹H NMR (DMSO- d_6 , 500 MHz), δ : 9.52–9.52 (1H, CH), 9.02–9.343(1H, CH), 7.23–7.03(H, (NO₂)₂); ¹³C NMR (DMSO- d_6 , 125 MHz), δ : 146.61, 143.53, 133.31, 130.31, 123.16, 118.80, 76.95; Anal. Calcd. for C₇ H₃ N₇ O₉ (%): C 25.54, H 0.92, N 29.79; Found: C 25.50, H 1.04, N 29.33.

3 Physicochemical and Energetic Properties

All the quantum computations were performed using the Gaussian 09 (Revision A. 02) suite of programs^[11]. The optimized structures were characterized to be true local energy

minima on the potential-energy surface without imaginary frequencies. The densities of DNBTO and TNBTO were computed based on Monte-Caolo method using the optimized structure at the B3LYP/6-311+G(d, p) level of theory [12-13]. The gas phase heats of formation were calculated by the atomization method using the Gaussian 09 program package at the CBS-4M level of theory [14]. Gas phase heat of formation was transformed to solid phase heat of formation by Trouton's rule^[15]. Based on the calculated density and heat of formation, the detonation velocity and detonation pressure for DNBTO and TNBTO were calculated by Kamlet-Jacobs equations^[16]. The stability was analyzed by TLC. The properties of TNBTO were obtained by calculation or test as follows: density is 1.81 g \cdot cm⁻³, detonation velocity is 8161.2 m \cdot s⁻¹, heat of formation is 143.7 kJ · kg⁻¹. Due to the introduce of R-C(NO₂)₂ group, TNBTO exhibits a higher density and detonation velocity compared with DNBTO. However, the heat of formation of TNBTO was lower than that of DNBTO, and TNBTO showed a relatively poor stability because it easily decomposes at room temperature. The physicochemical and detonation properties of DNBTO and TNBTO were listed in Table 1.

 Table 1
 The performances of DNBTO and TNBTO

properties	DNBTO	TNBTO	condition
formula	$C_6 H_3 N_5 O_5$	$C_7 H_3 N_7 O_9$	
molar mass	225	321	calculated
nitrogen content/%	31.1	29.8	calculated
oxygen balance/%	-60.4	-31.6	calculated
appearance	orange solid	yellow solid	Eyeballing(tested)
decomposition temperature/ $^{\circ}$ C	201.3 (DSC)	room temperature	TLCanalysis(tested)
density/g · cm ⁻³	1.73	1.81	Gaussian09 program(calculated)
detonation velocity/m \cdot s ⁻¹	7371.1	8162.2	K-J formula(calculated)
detonation pressure/GPa	24.0	30.2	K-J formula (calculated)
heat of formation/kJ \cdot mol ⁻¹	1232.1	143.7	Gaussian09 program(calculated)

4 Conclusions

- (1) TNBTO was firstly synthesized using 4,6-dinitrobenzotriazol-3-ium-1-oxide(DNBTO) as raw material via the reactions of metathesis, substitution and nitration-hydrolysis. Its structure was characterized by IR, NMR and element analysis.
- (2) The main performance of TNBTO were obtained by theoretical calculation as follows: density is 1.81 g \cdot cm⁻³, detonation velocity is 8161.2 m \cdot s⁻¹, heat of formation is 143.7 kJ \cdot kg⁻¹.
- (3) TNBTO was easily decomposed at room temperature, and showed a relatively poor thermal stability.

References:

- [1] Šarlauskas J, AnuseviCius Ž, Misiūnas A. Benzofuroxan (benzo [1,2-c]1,2,5-oxadiazole *N*-oxide) derivatives as potential energetic materials; studies on their synthesis and properties[J]. *Central European Journal of Energetic Materials*, 2012(9): 365–386.
- [2] Dippold A A, Klapötke T M. A Study of dinitro-bis-1,2,4-tria-zole-1,1'-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of *N*-oxides [J]. *Journal of the American Chemical Society*, 2013, 135: 9931 9938.
- [3] Kehler J, Püschl A, Dahl O. Improved synthesis of 1-hydroxy-4-ni-tro-6-trifluoromethylbenzotriazole and 1-hydroxy-4,6-dinitrobenzotriazole[J]. *Acta Chemica Scandinavica*, 1996, 50: 1171–1173.
- [4] Klapötke T M, Pflüger C, SuCeska M. Zwitterionic explosives based on 4, 6-dinitrobenzotriazol-3-ium-1-oxide [M]. New Trends Res. Energ. Mater, Proc. Semin. 17th, Pardubice, Czech, 2014: 754–768.
- [5] Semenov VV, Kanischev M I, Shevelev S A, et al. Thermal ring opening reaction of N-polynitromethyl tetrazoles: facile generation of nitrilimines and their reactivity [J]. *Tetrahedron*, 2009, 65: 3441–3445.

- [6] Katritzky A R, Sommen G L, Gromova A V, et al. Synthetic routes towards tetrazolium and triazolium dinitromethylides [J]. *Chemistry of Heterocyclic Compounds*, 2005, 41(1): 111–118.
- [7] Astrat'ev A A, Dashko D V, Stepanov A I. Reactivity of 2-(dinitromethylene)-4,6-dihydroxy-5,5-dinitropyrimidine in the processes of nucleophilic subatitution[C]//ICT, 2005: 444-450.
- [8] Klapotke T M, Xaver F S. Dinitromethyltetrazole and its salts-A comprehensive study[J]. *Propellants, Explosives, Pyrotechnics*, 2010, 35:114-129.
- [9] ZHANG Min, GE Zhong-xue, BI Fu-qiang, et al. Synthesis and performance of 2-dinitromethyl-5-nitrotetrazole [J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2013, 21(5): 688–690.
- [10] HUO Huan, WANG Bozhou, ZHAI Lian-jie, et al. An Insensitive energetic compound 5,7-diamino-4,6-dinitro-benzotriazol-3-ium-1-oxide: synthesis, characterization and performances [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(9): 857–861.
- [11] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, rev. A.02[CP], Gaussian, Inc., Wallingford, CT, 2009.
- [12] Qiu L, Xiao H M, Gong X D, et al. Crystal density predictions for nitramines base on quantum chemistry[J]. *Journal of Hazard-ous Materials*, 2007, 141(1): 280–288.
- [13] Rice B M, Hare J J, Byrd E F. Accurate predictions of crystal densities using quantum mechanical molecular volumes[J]. *The Journal of Physical Chemistry A*, 2007, 111(42): 10874–10879.
- [15] Westwell M S, Searle M S, Wales D J, et al. Empirical correlation between thermodynamic properties and intermolecular forces
 [J]. Journal of the American Chemical Society, 1995, 117: 5013-5015.
- [16] Kamlet M J, Jacobs S J. Chemistry of detonation I . A simple method for calculating detonation properties of CHNO explosives [J]. *The Journal of Physical Chemistry*, 1968, 48(1): 23–35.

4,6-二硝基苯并连三唑-3-偕二硝甲基-1-氧化物合成与性能

霍 欢1,廉 鹏1,翟连杰1,李亚南1,王伯周1,2,毕福强1,2

(1. 西安近代化学研究所, 陕西 西安 710065; 2. 氟氮化工资源高效开发与利用国家重点实验室, 陕西 西安 710065)

摘 要:以4,6-二硝基苯并连三唑-1-氧化物(DNBTO)为原料,通过复分解、取代、硝化-水解反应设计并合成了未见文献报道的新化合物 4,6-二硝基苯并连三唑-3-偕二硝甲基-1-氧化物(TNBTO);采用红外光谱、 1 H NMR、 13 C NMR 及元素分析等表征了中间体及最终产物的结构;理论计算了 TNBTO 的密度和生成焓,利用 Kamlet-Jacobs 方程计算了 TNBTO 的爆轰性能,其密度为 1.81 g·cm $^{-3}$,爆速为 8161.2 m·s $^{-1}$,爆压为 30.2 GPa;利用薄层色谱法跟踪验证了 TNBTO 的热稳定性,发现 TNBTO 常温下易分解。

关键词: 4,6-二硝基苯并连三唑-3-偕二硝甲基-1-氧化物(TNBTO); 合成; 性能

中图分类号: TJ55; O62

文献标志码: A

DOI: 10.11943/j.issn.1006-9941.2017.03.015