Synthesis, Crystal Structure and Properties of Potassium 7-Hydroxy-4, 6-dinitrobenzofuroxan Monohydrate $(KDNP \cdot H_2O)$

ZHANG Shi-xin, SHENG Di-lun, ZHU Ya-hong, NI De-bin, XU Dong, YU Guo-qiang

(The Institute of Shaanxi Applied Physics and Chemistry, Xi'an 710061, China)

electrostatic se Abstract: The main disadvantages of lead 2, 4, 6-trinitroresorecinate (LTNR) are too high electrostatic sensitivity and the harm to the human body and the environment caused by lead. In search of a replacement for LTNR, potassium 4,6-dinitro-7-oxygen $benzo furox an monohydrate (KDNP \cdot H_2O) was synthesized by two-step method. The single crystal of the compoud was obtained$ by solvent evaporation method. Its structure was chracterized by elemental analysis, IR spectroscopy, ¹H NMR/¹³C NMR spectroscopy and X-ray single-crystal diffraction. Its sensitivities were measured according to the Chinese military standard test method GIB-5891. The heat of detonation was calculated. The detonation parameters of the compound were calculated by Kamlet-Jacobs equations. Results show that the crystal is triclinic, space group P-1 with one crystal water. For this primary explosives, the impact sensitivity (H_{50}) is 21.3 cm, the electrostatic sensitivity (E_{50}) is 0.69 J, the friction sensitivity is 56%, the flame sensitivity is 24.7 cm, the heat of detonation is 3.50 kJ \cdot g⁻¹, the detonation velocity is 6.77 km \cdot s⁻¹ and detonation pressure is 21.25 GPa, revealing that KDNP \cdot H₂O is a primary explosives with lead-free, safe and environmental protection.

Key words: potassium 4,6-dinitro-7-oxygen-benzofuroxan monohydrate (KDNP · H2O); crystal structure; detonation performance; primary explosives

CLC number: TJ55; O62

Document code: A

DOI: 10.11943/j.issn.1006-9941.2017.09.006

《含能材料》"损伤与点火"征稿

含能材料的损伤特征与点火过程有密切的联系,炸药、推进剂的内部损伤及其对力学特性、安全特性和点火行为的影 响规律受到了含能材料学界的高度重视,为推动这一重要研究方向的学术交流,本刊特设立"损伤与点火"专栏。专栏主要 征集炸药、推进剂等含能材料的损伤观测与多尺度表征技术、含损伤的本构方程、准静态与动态损伤演化规律、损伤与破坏 www.energetic-material 的宏(细)观模式、损伤对起爆、爆炸、爆轰成长以及非冲击起爆行为的影响等方向的原创性研究论文。来稿请注明"损伤与

《含能材料》编辑部