文章编号:1006-9941(2025)04-0355-12

PFPE功能化微/纳铝粉在CL-20中的反应特性

吴成成1,孙 森1,李世伟2,郭学永1

(1.北京理工大学爆炸科学与技术国家重点实验室,北京 100081; 2.辽宁庆阳特种化工有限公司,辽宁 辽阳 111000)

摘 要: 为了探究不同粒径氧燃复合组装材料在六硝基六氮杂异伍兹烷(CL-20)中的定容燃烧、激光点火以及爆轰环境中的反应 特性,采用颗粒悬浮方法构筑了3种粒径规格全氟聚醚(PFPE)功能化微/纳铝粉(nAl_150@xPFPE,μAl_1@xPFPE和μAl_5@xPFPE, 其中 x=2.5%,5.0%,7.5%),捏合造粒方法制备了CL-20基含铝炸药,通过密闭爆发、激光点火以及爆速、爆热试验装置研究了压 力-时间曲线、激光诱导点火过程及其对能量释放速率和效率的影响。结果表明,随着 PFPE质量分数的增加,nAl_150@xPFPE 样品和μAl_1@xPFPE样品峰值压力和增压速率逐渐增大,μAl_1@7.5%PFPE样品峰值压力达到 4138.4 kPa,增压速率达到 0.216 MPa·ms⁻¹。但当 PFPE质量分数超过 5.0%时增压速率趋缓。同时,随着 PFPE质量分数的增加,不管在纳米尺度还是微米尺 度,PFPE功能化微/纳铝粉在 CL-20中的燃烧速率逐渐增大;当 x=7.5%时3种粒径规格 PFPE功能化微/纳铝粉在 CL-20中的燃烧速 率分别提高 2.1 cm·s⁻¹,1.8 cm·s⁻¹和 2.3 cm·s⁻¹。此外,设计了4种富含燃料的 CL-20基含铝炸药,其中 JWL-3(62%CL-20/ 32%μAl_1@5.0%PFPE/6%钝感黏结组分)实测爆速 8125 m·s⁻¹,爆热 8049.8 kJ·kg⁻¹,能量释放效率达到 86.10%。 关键词: 六硝基六氮杂异伍兹烷(CL-20);全氟聚醚(PFPE)功能化微/纳铝粉;定容燃烧;激光点火;爆轰环境

中图分类号:TJ55

文献标志码:A

DOI:10.11943/CJEM2024230

0 引言

目前,常以含能材料的燃烧或爆炸形式释放的化 学能量,通过传质传热实现对目标结构或功能的毁 伤^[1]。一般而言,CHON炸药如梯恩梯(TNT)、黑索今 (RDX)、奥克托今(HMX)和六硝基六氮杂异伍兹烷 (CL-20)等均为负氧平衡^[2-3],即分子内的氧化还原反 应不足以将碳和氢等可燃元素进行完全氧化。根据最 大放热原则,如可燃元素不能完全氧化,将无法使爆炸 反应能量释放达到最大值。为了提高混合炸药能量输 出总和与能量释放效率,混合炸药设计人员通常会在 炸药(特别是空爆/内爆温压炸药、燃料空气炸药以及 水下高气泡能炸药等)组成中加入一定量的氧化剂可 以改善其氧平衡^[4],为分子间的氧燃反应提供所需的

收稿日期: 2024-08-28; 修回日期: 2024-10-19 网络出版日期: 2024-12-27 作者简介: 吴成成(1994-),男,助理研究员,主要从事含能材料能 量释放与调控技术研究。e-mail:7520230124@bit.edu.cn 通信联系人: 郭学永(1975-),男,研究员,主要从事混合炸药配方 设计与应用技术研究。e-mail:nust@bit.edu.cn "氧",使燃料充分发生氧化反应并且释放出大量的 热。但在上述炸药生产过程中较少考虑氧燃反应传质 距离以及传热效率,通常只是一个物理混合过程,缺少 微观结构定向组装,割裂了分子间的氧燃反应界面,导 致氧燃反应释能效率不高。

随着对氧化剂重要性的认知愈加深刻,越来越多的 研究人员不再局限于在含铝炸药中选用高氯酸铵(AP)、 高氯酸钾(KP)、高氯酸锂(LiP)、二硝酰胺铵(ADN)等 传统型氧化剂^[5-6],而是选用含氟氧化性粘结剂用以调控 铝粉界面反应活性,如聚四氟乙烯(PTFE)、聚偏氟乙 烯(PVDF)、聚偏氟乙烯-三氟氯乙烯(P(VDF-CTFE), F23),聚偏氟乙烯-六氟丙烯(P(VDF-HFP),F26),聚 偏氟乙烯-四氟乙烯-六氟丙烯(P(VDF-HFP),F26),聚 偏氟乙烯-四氟乙烯-六氟丙烯(P(VDF-TFE-HFP), F246),全氟聚醚(PFPE)等^[7-10]。含氟氧化性粘结剂 (即高分子聚合物中的与C一C键相连接的氢原子全 部或大部分被氟原子取代),具有优异的耐腐蚀性、耐 热性以及耐氧化性等,不但能够有效阻止铝粉的进一 步氧化,而且能与惰性壳层Al₂O₃反应生成 β -AlF₃,增 加铝粉的反应活性,使得铝粉氧化反应更为完全;同 时, β -AlF₃的升华温度(1276 ℃)低于铝粉的燃烧温

引用本文:吴成成,孙森,李世伟,等. PFPE功能化微/纳铝粉在 CL-20 中的反应特性[J]. 含能材料,2025,33(4):355-366. WU Cheng-cheng, SUN Sen, LI Shi-wei, et al. Reaction Characteristics of Perfluoropolyether-Functionalized Micro/Nano Aluminum in Hexanitrohexaazaisowurtzitane[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2025,33(4):355-366.

CHINESE JOURNAL OF ENERGETIC MATERIALS

度,能够改善氧化产物烧结现象,不会阻碍铝粉的氧化 历程。其次,铝氟反应(56.10 MJ·kg⁻¹)释放能量约是 铝氧(30.98 MJ·kg⁻¹)的2倍^[11],加入含氟氧化性粘结 剂不会过度降低改性铝粉的能量水平。因此,开展氧 燃微观结构定向组装,实现氧燃组分紧密结合,优化反 应微区环境是提升含铝炸药毁伤效能的一个亟待解决 的课题。

现阶段采用增加可燃剂和氧化剂的接触面积或减 小可燃剂和氧化剂的传质距离等调控策略改善了铝的 不完全燃烧和提高了铝的反应速率^[12-15],但核壳构型 氧燃材料在典型硝胺炸药中的能量输出特性研究工作 较少,以及整体爆炸能量增益效果未知。基于氧燃反 应界面设计,本研究以PFPE功能化微/纳铝粉为研究 对象,开展了不同粒径铝粉在高能炸药CL-20中的定 容燃烧、激光点火以及爆轰环境中的反应特性,可为 CL-20基含铝炸药配方设计以及反应提升提供技术 支持。

1 实验部分

1.1 试剂与仪器

试剂:CL-20,IV类工业品,辽宁庆阳特种化工有 限公司;不同粒径铝粉(*D*₅₀=150 nm,*D*₅₀=1 μm以及 *D*₅₀=5 μm),鞍钢实业微细铝粉有限公司;PFPE,Fomblin® Y25,上海亚杜润滑材料股份有限公司;无水乙 醇,分析纯,北京市通广精细化工公司;1,1,2-三氟三 氯乙烷(C₂Cl₃F₃),分析纯,北京市通广精细化工公司。

试验仪器:扫描电子显微镜,SU8020,日本日立 公司;微机全自动量热仪,TRHW-7000C,鹤壁天润电 子公司;密闭爆发器和CO₂激光点火试验装置,自搭。

1.2 样品制备

1.2.1 PFPE功能化微/纳铝粉样品制备

首先,将选择的特定尺度的球形微/纳铝粉分散于 无水乙醇溶液中,控制铝粉与无水乙醇分散比例为 1g:15 mL,超声分散 30~45 min。然后,按照质量分 数 2.5%,5.0% 和 7.5% 分别称量 PFPE 加至烧杯中,悬 浮在 C₂Cl₃F₃溶剂中^[16-17],加入经预处理后的微/纳球 形铝粉无水乙醇溶液。开启磁力搅拌,转速控制在 400~800 r·min⁻¹,搅拌 45~60 min 后进行抽滤,无水 乙醇冲洗 3~5次;将抽滤后的样品置于 50~60 ℃烘箱 内,直至溶剂完全蒸发,最后得到 PFPE 功能化微/纳铝 粉样品,分别记为 nAl_150@xPFPE, μ Al_1@xPFPE 和 μ Al_5@xPFPE(x=2.5%,5.0%,7.5%)。

1.2.2 PFPE 功能化微/纳铝粉以及 CL-20 混合样品 制备

在常温条件下,控制 PFPE 功能化微/纳铝粉与 CL-20的质量比为1:2,通过物理混合制备样品,分别 记为 CL-20+nAl_150@xPFPE, CL-20+μAl_1@xPFPE 和CL-20+μAl_5@xPFPE(x=2.5%,5.0%,7.5%)。

1.2.3 CL-20基含铝炸药制备

参照文献报道^[18]捏合造粒方法制备4种CL-20基 含铝炸药,具体组成配比如表1所示。

表1 不同CL-20基含铝炸药组成配比

Table 1Different composition ratio of CL-20 based alumi-nized explosives

explosives	theoretical density / g·cm ⁻³	charge density / g·cm ⁻³	fuel composition
JWL-1	2.096	2.033	μAl_1
JWL-2	2.090	2.027	μAl_1@2.5%PFPE
JWL-3	2.084	2.021	μAl_1@5.0%PFPE
JWL-4	2.078	2.016	µAl_1@7.5%PFPE

1.3 实验部分

1.3.1 PFPE功能化微/纳铝粉性能表征

采用扫描电子显微镜(SEM)和X射线能谱仪(EDS) 对 nAl_150@xPFPE, μAl_1@xPFPE 和 μAl_5@xPFPE (x=2.5%, 5.0%, 7.5%)的微观形貌与元素组成进行 表征。

根据有色金属行业标准YS/T 617.1-2007,采用气体测量仪装置对 nAl_150@xPFPE,μAl_1@xPFPE和μAl_5@xPFPE(x=2.5%,5.0%,7.5%)的活性铝含量进行测试,每个样品测量两次,第二次作为修正,测量误差不超过0.80%,认为测量结果准确,否则需进行补测,求取平均值。

采用微机全自动量热仪对 nAl_150@xPFPE, μAl_1@xPFPE和μAl_5@xPFPE(x=2.5%,5.0%,7.5%) 的燃烧热值进行测试,考虑燃烧热值较大,故取少量样 品,质量为0.1~0.2g,氛围为O₂,压力为3 MPa。每个 样品测量两次,第二次作为修正,测量误差不超过1 MJ, 认为测量结果准确,否则需进行补测,求取平均值。

1.3.2 PFPE 功能化微/纳铝粉以及 CL-20 混合样品压力-时间曲线

采用密闭爆发器试验装置对不同 PFPE 功能化微/ 纳铝粉以及 CL-20 混合样品在定容燃烧下的压力-时 间曲线进行测试,样品质量(30±1) mg,氛围为 O₂,压 力为 2 MPa,电源电压 24 V,数据采集间隔 0.001 s。

图1 密闭爆发器试验装置示意

Fig.1 Schematic description of the constant volume combustion cell test

1.3.3 PFPE 功能化微/纳铝粉以及 CL-20 混合样品激 光点火

采用激光点火试验装置(如图2所示)对不同 PFPE功能化微/纳铝粉以及CL-20混合样品在开放条 件下的点火过程进行测试,样品质量(30±1)mg,激光 波长为10.6 μm,激光电源功率为120W,高速摄影仪 帧率为10000 fps。

图 2 CO₂激光点火试验装置示意 Fig.2 Schematic description of the CO₂ laser ignition test

1.3.4 CL-20基含铝炸药爆轰性能测试

开展 CL-20基含铝炸药(62% CL-20/32% 燃料/6% 钝感粘结组分)爆速、爆热等爆轰性能测试。爆速测试 选用 Φ40 mm 钝化 RDX 作为传爆药柱,药柱尺寸为 Φ40 mm×40 mm,共10个。由于实测爆速受药柱密 度的影响,药柱密度按照 97.0% 理论密度进行压制。 爆热测试选用 Φ40 mm 药柱,药柱质量(100±0.1)g, 且药柱底部带有雷管孔,压制成型后的用于测试爆热 的药柱,爆热测试进行 2次,取测试的平均值作为该 CL-20基含铝炸药的实测爆热。

2 结果与讨论

2.1 PFPE 功能化微/纳铝粉微观形貌与性能 2.1.1 微观形貌

为了观测 PFPE 在微/纳铝粉表面的分布,通过 SEM和EDS对不同 PFPE功能化微/纳铝粉样品的微观 形貌和元素组成进行了测试,以μAl_1@xPFPE(x= 2.5%,5.0%,7.5%)为例,得到如图3所示的结果。

a. μAl_1@2.5%PFPE

b. μAl_1@5.0%PFPE

c. μAl_1@7.5%PFPE

图 3 µAl_1@xPFPE(x=2.5%, 5.0%, 7.5%)样品 SEM 照片与 EDS 扫描结果

Fig.3 SEM images and EDS scanning results of μAl_1@xPFPE (x=2.5%, 5.0%, 7.5%) samples

CHINESE JOURNAL OF ENERGETIC MATERIALS

3种样品形貌规整,近似球形,表面光滑,但表面存在不同程度的"褶皱",即不同质量的PFPE聚集在球形微米铝粉上。另外,EDS扫描结果显示球形微米铝粉表面存在特征元素F,且F元素与AI元素的分布重合,确认PFPE吸附在球形微米铝粉上。

2.1.2 能量释放效率

对于复合材料而言,根据各个组分的含量及相应 的燃烧热值可以计算出整个体系的燃烧热值,但是组 分的不充分燃烧常会导致燃烧放出的总热量小于计算 值。通过测量材料燃烧时放出的热量,可以直观比较 地看出组分的反应程度。为了进一步地分析 PFPE 功 能化微/纳铝粉在定容燃烧室内的能量释放情况,能量 释放效率可按式(1)进行计算。

$$\eta = \frac{q_{\text{actual}}}{q_{\text{theoretical}} \times A_{\text{a}}} \tag{1}$$

式中, η 为能量释放效率,%; q_{actual} 为实测燃烧热值, MJ·kg⁻¹; $q_{theoretical}$ 为理论燃烧热值,MJ·kg⁻¹; A_a 为样品中的活性铝含量,%。

根据式(1),本研究测定了不同 PFPE 功能化微/纳 铝粉样品的燃烧热值以及活性铝含量,并计算了其在 定容燃烧室内的能量释放效率,结果如图4所示。

由图4可知,随着PFPE质量分数的增加,在定容 燃烧室内 PFPE 功能化微/纳铝粉样品的能量释放效率 均有所提高。与原料微/纳铝粉相比, nAl 150@ 7.5%PFPE, µAI 1@7.5%PFPE和 µAI 5@7.5%PFPE能 量释放效率分别提高 8.50%、1.50% 和 1.36%, 在于 PFPE可通过预点火反应(PIR)瓦解惰性氧化壳层促进 微/纳铝粉在定容燃烧室内的充分燃烧,但铝粉粒径越 小,活性铝含量越低,因此PIR放出热量多少受到活性 铝含量以及 PFPE 质量分数(即反应界面氧燃比,即在 化学反应界面上氧化元素与可燃元素之间的质量比) 的调控。随着活性铝含量的下降,nAI 150@xPFPE燃 烧热值先增后减,当x=5.0%时燃烧热值较原料纳米 铝粉提高1.73 MJ·kg⁻¹,实现最大能量增益。但值得 注意的是, µAI 1@xPFPE 和 µAI 5@xPFPE 的燃烧热 值和能量释放效率曲线走势呈现"背离",在微米尺度 中PIR反应放出的热量不能实现能量补偿,但仍可通 过改变反应路径提高能量释放效率。换而言之,活性 铝含量在热力学上决定了样品燃烧热值的高低, PFPE 质量分数在动力学影响了样品能量释放情况。

2.1.3 压力-时间曲线

测试样品在不同气氛或不同压力下燃烧时的 p-t 曲线,可获取其燃烧的峰值压力以及增压速率,进而能

图 4 不同 PFPE 功能化微/纳铝粉样品的能量释放效率对比 Fig. 4 Energy release efficiency comparison of different PFPE-functionalized micro/nano aluminum samples

够了解样品对外做功能力及对热的响应快慢,是了解 样品燃烧特性的重要手段之一。采用样品在密闭容器 内的增压速率来表征样品的反应速率,通过将压力开 始上升的点定义为起始点,以此计算样品的增压速率, 如式(2)所示。

$$R = \frac{p_{\max} - p_0}{t_{\max} - t_0}$$
(2)

式中, p_{max} 为燃烧峰值压力,MPa; p_0 为曲线开始上升时的初始压力,MPa; t_{max} 为与峰值压力相对应的时间,ms; t_0 为压力开始上升的时间,ms;R为压力增长速率,MPa·ms⁻¹。

2 MPa O₂下 nAl_150@xPFPE, μAl_1@xPFPE, μAl_5@xPFPE(x=2.5%,5.0%,7.5%)样品 *p-t*曲线及 其增压速率如图 5 所示。

由图 5 可知,随着铝粉粒径的增大,PFPE 功能化 微/纳铝粉峰值压力逐渐降低,增压速率随之骤降。以 x=2.5% 为例, nAl_150@2.5%PFPE 增压速率约为

nAl_150的5倍,而当铝粉粒径增至1μm时约为3倍, 增至5μm时不到2倍,可见由其燃烧释能速率控制。 随着PFPE质量分数的增加,不管在纳米尺度还是微米尺 度,PFPE功能化微/纳铝粉峰值压力逐渐升高,增压速率 随之增大;同时,峰值压力和增压速率主要受铝粉粒径的 影响,nAl_150@xPFPE>μAl_1@xPFPE>μAl_5@xPFPE, 说明铝粉粒径越小,燃烧释能速率越快。相较于微/纳 铝粉,当x=7.5%时,3种粒径规格样品的增压速率分 别提升6.6、3.5倍和1.6倍,但从增压速率走势上可知 后续增长幅度趋缓。这是由于PFPE分解过程中快速 放热和生成CO₂、HF等气相物质,根据理想气体状态

方程,当体积不变(燃烧室的体积固定)时,燃烧室内 气体的物质的量增大,压力随之升高。但加入过量 的 PFPE 时,尽管 PFPE 分解产生的气体增多,但因释 放出的热量减少,定容燃烧室内的温度下降,这时不 能协同增压,可见燃料热值应是后续将其应用在混 合炸药中需要关注的一个要点,需要平衡铝粉粒径 以及 PFPE质量分数。这一规律与定容燃烧下的能量 释放效率(图 4)一致,说明适量 PFPE 的加入能够加 快铝粉在定容燃烧下的反应速率,提高燃烧释能 效率。

2.2 定容燃烧中 PFPE 功能化微/纳铝粉反应特性

2.2.1 不同粒径下的压力-时间曲线

为了研究不同粒径铝粉在CL-20定容燃烧中的反应特性,通过密闭爆发器测量了不同粒径铝粉以及CL-20混合样品的燃烧压力随时间的变化曲线。2 MPa下不同粒径铝粉在CL-20中的*p-t*曲线及其增压速率如图6所示。

由图 6 可知,随着铝粉粒径的增大,CL-20/Al 混合体系峰值压力先增后减,而增压速率逐渐减小。

图 6 不同粒径铝粉在 CL-20 中的 *p*-*t* 曲线及其增压速率 (2 MPa, O₂)

Fig.6 *p*-*t* curves and pressurization rates of aluminum with different particle sizes in CL-20(2 MPa, O_2)

原因如下:CL-20分子内的氧化还原反应速率快于 分子间的氧化还原反应速率,CL-20中加入不同粒 径铝粉后,在定容燃烧室内的增压速率呈下降趋 势。同时,CL-20氧化产物CO₂、CO和H₂O等在定 容燃烧室内会参与铝的氧化反应,放出热量,但该 过程受到铝粉粒径限制,铝粉粒径越小,燃烧反应 速率越快,能在较短时间内利用CL-20的氧化产物。 正是CL-20燃烧产物与AI之间的二次反应的剧烈 程度影响了定容燃烧下的峰值压力高低以及增压 速率下降程度。因此,添加小粒径的铝粉能够增强 CL-20的燃烧反应特性(即燃烧反应增强物质),提 高燃烧做功能力。

2.2.2 不同 PFPE 质量分数下的压力-时间曲线

为了研究不同 PFPE 质量分数微/纳铝粉在 CL-20 定容燃烧中的反应特性,通过密闭爆发器测量了 PFPE 功能化微/纳铝粉以及 CL-20 混合样品的燃烧压力随 时间的变化曲线。2 MPa O₂下 nAl_150@xPFPE, μ Al_1@xPFPE, μ Al_5@xPFPE(x=2.5%, 5.0%, 7.5%) 样品在 CL-20 中的 *p*-*t*曲线及其增压速率如图 7 所示。

由图7可知,随着 PFPE质量分数的增大, nAl 150@xPFPE样品和 μAl 1@xPFPE样品峰值压力和 增压速率逐渐增大,当PFPE含量超过5.0%时增压速 率趋缓,但仍远高于CL-20/AI混合体系;中位径 μ Al 5@xPFPE样品峰值压力不如CL-20/Al混合体系, 增压速率高于CL-20/AI混合体系,峰值压力先减后 增,增压速率先增后减,但与CL-20/AI混合体系差异 不大。原因如下:依据不同反应界面氧燃比微/纳铝粉 p-t曲线及其增压速率(图 6),引入 PFPE 会促进微/纳 铝粉燃烧做功能力,同样地在CL-20中仍循序着这一 规律。区别在于CL-20中的 p-t曲线及其增压速率高 于 PFPE 功能化微/纳铝粉自身的 p-t曲线及其增压速 率,可知 PFPE 进一步增强了 AI 在 CL-20 中的气相燃烧 反应,加快了氧化反应进程,产生了更多的气体分解产 物。随着 PFPE 与微/纳铝粉含量的此增彼减,由于 AI 的燃烧反应放热降低,致使增压速率趋缓。在 μ Al 5@xPFPE 样品中, PFPE 能够加快反应速率, 但 PIR不明显不足以支撑混合体系增压,表现在峰值压 力上不如CL-20/AI混合体系。仅从在CL-20中的峰值 压力和增压速率上考虑, µAI 5@xPFPE样品属于热力 学上没有优势,动力学上略有优势;nAl 150@xPFPE 样品和 uAl 1@xPFPE 样品属于热力学上和动力学上 优势突出。

图 7 2 MPa O₂下不同 PFPE 功能化微/纳铝粉样品在 CL-20 中的 *p*-t曲线及其增压速率 Fig.7 *p*-t curves and pressurization rates of different PFPE-functionalized micro/nano aluminum samples in CL-20 at 2 MPa O₂

2.2.3 不同初始压力下的压力-时间曲线

为了研究定容燃烧室中的 O_2 压力如何影响不同反 应界面氧燃比微/纳铝粉在CL-20定容燃烧中的反应特 性,通过密闭爆发器测量了1 MPa O_2 下 PFPE功能化微/ 纳铝粉以及 CL-20混合样品的燃烧压力随时间的变化曲 线。1 MPa O_2 下 nAl_150@xPFPE, μ Al_1@xPFPE, μ Al_5@xPFPE(x=2.5%, 5.0%, 7.5%)样品在CL-20中 的 *p*-*t*曲线及其增压速率如图 8 所示。

由图 8 可知, 与 2 MPa O₂下峰值压力及其增压速率相比, 不同 PFPE 功能化微/纳铝粉峰值压力和增压

速率均为降低,尽管µAl_1@xPFPE样品峰值压力高于 µAl_5@xPFPE样品,但定容燃烧室中的初始压力增长 至峰值所需时间延长,导致增压速率不及后者,由其在 定容燃烧下反应速率快慢决定。在给定压力下,随着 PFPE含量的增加,混合体系峰值压力和增压速率随之 增大,与图7一致。

2.3 激光点火中 PFPE 功能化微/纳铝粉反应特性

2.3.1 点火过程分析

为了研究不同反应界面氧燃比微/纳铝粉在CL-20 激光点火中的反应特性,通过高速摄影记录了不同混合

图 8 1 MPa O₂下不同 PFPE 功能化微/纳铝粉样品在 CL-20 中的 *p*-t曲线及其增压速率 Fig.8 *p*-t curves and pressurization rates of different PFPE-functionalized micro/nano aluminum samples in CL-20 at 1 MPa O₂

体系的激光点火燃烧过程。截取样品不同燃烧阶段的火 焰照片依次阵列排布,如图9~图11所示。

在 CL-20 中 PFPE 功能化微/纳米铝粉燃烧更为剧 烈,且火焰略带黄色。原因在于微/纳铝粉与 CL-20 气 相燃烧产物发生燃烧反应,混合体系中气固相对运动 加强,微/纳铝粉在 PFPE 与 CL-20 的协同作用下发生 "吹扫"扩散,利于铝的气化燃烧,增强了混合体系的热 反应性。

2.3.2 燃烧速率

计算了不同 PFPE 功能化微/纳铝粉样品在 CL-20 中的平均火焰传播速度,用于研究其在激光点火下的

燃烧过程,计算结果如表2所示。

忽略测量误差、燃烧不稳定性等因素,随着铝粉粒径的增大,PFPE功能化微/纳铝粉在CL-20中燃烧速率逐渐减小,可见铝粉粒径显著影响其在CL-20中的燃烧速率;进一步地,随着PFPE质量分数的增加,不管在纳米尺度还是微米尺度,PFPE功能化微/纳铝粉在CL-20中的燃烧速率逐渐增大。

2.4 爆轰环境中 PFPE 功能化微/纳铝粉反应特性

2.4.1 CL-20爆轰环境中能量释放速率

爆速指爆轰波在炸药装药中稳定传播的速度,是 衡量炸药能量释放速率的重要示性数。用于计算混合

图 9 nAl_150@xPFPE样品在CL-20中激光点火燃烧过程 Fig.9 Laser ignition combustion process of nAl_150@xPFPE sample in CL-20

图 10 μAl_1@xPFPE样品在CL-20中激光点火燃烧过程 Fig. 10 Laser ignition combustion process of μAl_1@xPFPE sample in CL-20

炸药爆速的方法包括Urizar法、Kamlet法等^[2,19],采用Urizar公式(体积加和)计算CL-20基含铝炸药理论爆速,如式(3)所示。

$$D_{\max} = \sum (D_i V_i) \tag{3}$$

式中, D_{max} 为无限直径时混合炸药的爆速, $m \cdot s^{-1}$; D_i 为 混合炸药中组分*i*的特征爆速, $m \cdot s^{-1}$; V_i 为混合炸药中组 分*i*的体积分数。其中,CL-20的特征爆速9500 $m \cdot s^{-1}$, AI的特征爆速6850 $m \cdot s^{-1}$,钝感粘结组分的特征爆速 为5600 $m \cdot s^{-1}$ 。

图 11 μAl_5@xPFPE样品在CL-20中激光点火燃烧过程 Fig.11 Laser ignition combustion process of μAl_5@xPFPE sample in CL-20

表 2 PFPE功能化微/纳铝粉在 CL-20 中的燃烧速率计算结果 Table 2 Burning rate calculation results of PFPE-functionalized micro/nano aluminum in CL-20

No.	samples	burning time / ms	burning rate / cm·s ⁻¹
1	nAl_150	283	7.067
2	nAl_150@2.5%PFPE	254	7.874
3	nAl_150@5.0%PFPE	233	8.584
4	nAl_150@7.5%PFPE	218	9.174
5	μAl_1	294	6.803
6	μAl_1@2.5%PFPE	268	7.463
7	μAI_1@5.0%PFPE	243	8.230
8	μAl_1@7.5%PFPE	231	8.658
9	μAl_5	698	2.865
10	μAI_5@2.5%PFPE	523	3.824
11	μAI_5@5.0%PFPE	422	4.739
12	μAI_5@7.5%PFPE	386	5.181

为了凸显燃料对于CL-20基含铝炸药能量释放速 率的影响,由于μAl_1@xPFPE在定容条件下燃烧热值 高和增压速率快,且在开放条件下燃烧速率快,选择将 其作为目标燃料,进而设计了4种富含燃料的CL-20 基含铝炸药,爆速测试结果如表3所示。

随着 PFPE 含量增加,CL-20 基含铝炸药理论爆速 逐渐下降,实测爆速先升高后降低,JWL-3实测爆速最 大,为 8125 m·s⁻¹,表明添加一定含量的 PFPE 能够强 化铝粉在爆轰反应区内的参与程度,促进爆炸能量的

表3 CL-20基含铝炸药的实测爆速及相对爆速

Table 3Measured detonation velocity and relative detona-tion velocity of CL-20 based aluminized explosives

	theoretical	measured	relative
samples	detonation	detonation	detonation
	velocity / $m \cdot s^{-1}$	velocity / $m \cdot s^{-1}$	velocity / %
JWL-1	8400	8081	96.2
JWL-2	8384	8107	96.7
JWL-3	8368	8125	97.1
JWL-4	8353	8061	96.5

协同释放,提高爆轰波的传播速度,但受能量释放水平限制(即活性铝的含量),即实现高的爆速需要衡量炸药反应速率以及混合体系在爆轰区内的能量释放效率。

2.4.2 CL-20爆轰环境中能量释放效率

含铝炸药储能高并不意味着放出的能量多,反之 储能低并不意味着放出的能量少。因此,含铝炸药能 量释放效率对于炸药配方设计优化和能量输出结构分 析至关重要。能量释放效率是指单位质量含能材料释 放的能量占储能的比例,在爆轰环境中即实测爆热与 理论爆热的比值,能够衡量含铝炸药在爆轰反应区和 爆轰产物膨胀区内的释能特性。通过改变燃料组成结 构,研究 μAl_1@2.5%PFPE, μAl_1@5.0%PFPE 和 μAl_1@7.5%PFPE在CL-20爆轰环境中能量释放效率 差异。

若要计算 CL-20 基含铝炸药的能量释放效率,首 先需要知道该炸药配方的理论爆热。EXPLO 5 是常用 的爆炸能量计算程序^[20],在一定的温度、压力下根据 最小自由能原理计算反应物所有可能发生的化学反 应,直至产物和反应物达到化学平衡,得到爆热、爆速、 爆压以及产物类型数量等参数。借助 EXPLO 5 软件 计算了不同 CL-20 基含铝炸药的理论爆热,计算结果 记录在表4中。

表 4 CL-20 基含铝炸药的实测爆热及能量释放效率 Table 4 Measured detonation heat and energy release efficiency of CL-20 based aluminized explosives

samples	theoretical detonation heat / kJ•kg ⁻¹	measured detonation heat / kJ·kg ⁻¹	energy release efficiency/%	fuel composition
JWL-1	9417.8	7986.3	84.8	μAl_1
JWL-2	9404.1	8021.6	85.3	μAI_1@2.5%PFPE
JWL-3	9349.3	8049.8	86.1	μAI_1@5.0%PFPE
JWL-4	9303.4	8028.8	86.3	μAl_1@7.5%PFPE

Chinese Journal of Energetic Materials, Vol.33, No.4, 2025 (355-366)

随着 PFPE含量增加,CL-20基含铝炸药理论爆热逐 渐下降,原因在于 PFPE的燃烧热值低于铝,但实测爆热 先升高后降低,JWL-3实测爆热最大,为8049.8 kJ·kg⁻¹, 表明添加一定含量的 PFPE 能够促进爆炸能量的充分 释放,提高爆热。

为了对比不同 CL-20 基含铝炸药的能量释放效 率,计算了各个炸药的能量释放效率η,得到了能量释 放效率随 PFPE含量的变化趋势,如图 12 所示。

Fig.12 Energy release efficiency of CL-20 based aluminized explosives

随着 PFPE 含量增加, CL-20 基含铝炸药能量释 放效率逐渐升高,但升高幅度随之趋缓,当在炸药 中引入 5.0% PFPE 时,能量释放效率最高,为 86.1%。 由于铝参与 CL-20 爆轰产物膨胀区的燃烧反应,同 时引入 PFPE 能够降低铝的反应阈值,能够协同高温 高压解构铝的"核-壳"结构,燃烧速率加快,燃烧时 间缩短,进而提高了铝在爆轰产物中的反应程度, 使得 CL-20 基含铝炸药能量释放效率有所提高;由 于 PFPE 的燃烧热值不如铝粉,加入过量的 PFPE 使 得 CL-20 基含铝炸药的理论爆热降低,尽管能量释 放效率得以提高,但实测爆热已无优势。因此,在 CL-20 基含铝炸药设计需综合考虑混合体系的理论 能量水平和能量释放效率,以实现爆轰能量最 大化。

3 结论

(1)PFPE功能化微/纳铝粉燃烧释能效率受到活性铝含量以及PFPE质量分数的影响,活性铝含量在热力学上决定了燃烧热值的高低,PFPE质量分数在动力学影响了能量释放情况。

(2)随着 PFPE 质量分数的增加, nAl_150@xPFPE 样品和 μAl_1@xPFPE 样品在 CL-20 中的峰值压力和 增压速率逐渐增大, μAl_1@7.5%PFPE 样品峰值压力 达到 4138.4 kPa, 增压速率达到 0.216 MPa·ms⁻¹。

(3)随着铝粉粒径的增大,PFPE功能化微/纳铝粉在 CL-20 中燃烧速率逐渐减小;随着 PFPE质量分数的增加,PFPE功能化微/纳铝粉在 CL-20 中的燃烧速率逐渐增大,当添加 7.5%PFPE时 3 种粒径规格 PFPE功能化微/纳铝粉在 CL-20 中的燃烧速率分别提高 2.1 cm·s⁻¹、1.8 cm·s⁻¹和 2.3 cm·s⁻¹。

(4)PFPE可以激发铝粉在CL-20爆轰反应区内的 反应活性,促进爆炸能量的协同释放,提高CL-20基含 铝炸药爆轰能量释放速率和效率。

参考文献:

- [1] 肖川,宋浦,张默贺.常规高效毁伤用火炸药技术发展趋势[J]. 火炸药学报,2021,44(5):541-544.
 XIAO Chuan, SONG Pu, ZHANG Mo-he. Development trend of conventional high-efficiency explosive technology for damage[J]. Chinese Journal of Explosives & Propellants, 2021, 44 (5):541-544.
- [2] 孙业斌, 惠君明, 曹欣茂. 军用混合炸药[M]. 北京: 兵器工业 出版社, 1995.
 SUN Ye-bin, HUI Jun-ming, CAO Xin-mao. Military mixed ex-

plosive[M]. Beijing: Weapon Industry Press, 1995.

- [3] 欧育湘,刘进全.高能量密度化合物[M].北京:国防工业出版 社,2005:11-12.
 OU Yu-xiang, LIU Jin-quan. High energy density compound [M]. Beijing: National Defence Industry Press, 2005:11-12.
- [4] 王伯良,李亚宁,韩志伟.温压炸药发展趋势的几点思考[J].火炸药学报,2023,46(11):935-936.
 WANG Bo-liang, LI Ya-ning, HAN Zhi-wei. Reflections on the development trend of thermobaric explosives[J]. *Chinese Journal of Explosives & Propellants*, 2023, 46(11):935-936.
- [5] DENG P, WANG H X, YANG X B, et al. Thermal decomposition and combustion performance of high-energy ammonium perchlorate-based molecular perovskite [J]. *Journal of Alloys and Compounds*, 2020, 827: 154257.
- [6] 段卜仁. AP/AN 基光控固体推进剂可控燃烧特性及其比冲增强 技术研究[D]. 南京:南京理工大学, 2022.
 DUAN Bu-ren. Controllable combustion behaviors and specific impulse augmented techniques of AP/AN-based laser-controlled solid propellant[D]. Nanjing: Nanjing University of Science and Technology, 2022.
- [7] MAO Y F, HE Q Q, WANG J, et al. Tuning energy output of PTFE/Al composite materials through gradient structure[J]. *Defence Technology*, 2023, 26: 134–142.
- $\left[\,8\,\right]\,$ LI Y N, LI J, WANG B L, et al. An approach to the induced re-

action mechanism of the combustion of the nano-Al/PVDF composite particles [J]. *Surface & Coatings Technology*, 2022, 429: 127912.

- [9] WANG H Y, REHWOLDT M, KLINE D J, et al. Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites[J]. *Combustion and Flame*, 2019, 201: 181–186.
- [10] MCCOLLUM J, PANTOYA M L, IACONO S T. Activating aluminum reactivity with fluoropolymer coatings for improved energetic composite combustion[J]. *ACS Applied Materials & Interfaces*, 2015, 7(33): 18742–18749.
- [11] KOCH E C. Metal-fluorocarbon based energetic materials [M].Weinheim, Germany: Wiley-VCH, 2012.
- [12] JIANG C L, BI H B, LIN Q Z, et al. Influence of different oxides on the combustion process of nano aluminum [J]. Fuel, 2025, 380: 133132.
- [13] WANG C, LIU Y, WU M Z, et al. Micro-aluminum powder with bi-or tri-component alloy coating as a promising catalyst: Boosting pyrolysis and combustion of ammonium perchlorate
 [J]. Defence Technology, 2024, 33(3): 100-113.
- [14] LI G, ZHAO C D, YU Q, et al. Revealing Al—O/Al—F reaction dynamic effects on the combustion of aluminum nanoparticles in oxygen/fluorine containing environments: A reactive molecular dynamics study meshing together experimental validation[J]. *Defence Technology*, 2024, 34(4): 313–327.
- [15] FAN Z M, QIN Z R, DENG T Z, et al. Assessing the ignition and combustion of a kerosene droplet containing boron nanoparticles coated with polydopamine and polyvinylidene fluoride[J]. Combustion and Flame, 2024, 263: 113411.
- [16] WU C C, NIE J X, LI S W, et al. μAl-based reactive materials with improved energy efficiency by using the fluorine-containing oxidizer perfluoropolyether as an interfacial layer[J]. Combustion and Flame, 2023, 248: 112554.
- [17] WU C C, NIE J X, LI S W, et al. Tuning the reactivity of perfluoropolyether-functionalized aluminum nanoparticles by the reaction interface fuel-oxidizer ratio [J]. Nanomaterials, 2022, 12(3): 530.
- [18] 张磊,吴成成,王正宏,等. CL-20基压装型温压炸药的设计及 性能研究[J]. 爆破器材, 2022, 51(5): 7-11.
 ZHANG Lei, WU Cheng-cheng, WANG Zheng-hong, et al. Effect of aluminum content on the performance of thermobaric explosive[J]. *Explosive Materials*, 2022, 51(5): 7-11.
- [19] KAMLET M J, JACOBS S J. Chemistry of Detonations. I. A simple method for calculating detonation properties of C—H—N—O explosives [J]. *Journal of Chemical Physics*, 1968, 48 (1) : 23–35.
- [20] 杜明燃, 汪旭光, 郭子如, 等. 爆轰产物组成和爆轰参数计算方 法的理论研究[J]. 爆炸与冲击, 2015, 35(4): 449-453.
 DU Ming-ran, WANG Xu-guang, GUO Zi-ru, et al. Theoretical studies for calculating the detonation products and properties of explosives[J]. *Explosion and Shock Waves*, 2015, 35 (4): 449-453.

Reaction Characteristics of Perfluoropolyether-Functionalized Micro/Nano Aluminum in Hexanitrohexaazaisowurtzitane

WU Cheng-cheng¹, SUN Sen¹, LI Shi-wei², GUO Xue-yong¹

(1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; 2. Liaoning Qingyang Special Chemical Corporation, Liaoyang 111000, China)

Abstract: In order to investigate the reaction characteristics of oxidizer-fuel composite materials with different particle sizes in constant-volume combustion, laser ignition and detonation environment of high energy explosive hexanitrohexaazaisowurtzitane (CL-20), three particle sizes of perfluoropolyether-functionalized micro/nano aluminum (nAl 150@xPFPE, µAl 1@xPFPE and μ Al_5@xPFPE, where x=2.5%, 5.0%, 7.5%) was constructed by particle suspension method, and CL-20 based aluminized explosive was prepared by kneading granulation method. The pressure-time curve, laser-induced ignition process, energy release rate and efficiency of samples in CL-20 were studied by means of closed constant-volume explosive device, laser ignition, detonation velocity and detonation heat test equipment, respectively. The results showed that with the increase of PFPE mass fraction, the peak pressure and pressurization rate of nAl_150@xPFPE samples and μ Al_1@xPFPE samples increased gradually, while the peak pressure of µAl 1@7.5%PFPE sample reached 4138.4 kPa and its pressurization rate reached 0.216 MPa·ms⁻¹. However, when the PFPE mass fraction exceeded 5.0%, the pressurization rate seemed to slow down. At the same time, with the increase of PFPE mass fraction, the burning rate of PFPE-functionalized micro/nano aluminum in CL-20 increased gradually. When x=7.5%, the burning rate of all the three samples with different particle sizes in CL-20 increased by 2.1 cm \cdot s⁻¹, 1.8 cm \cdot s⁻¹ and 2.3 cm·s⁻¹, respectively. In addition, four kinds of fuel-rich CL-20 based aluminized explosives were designed. Among them, the measured detonation velocity of JWL-3 explosive (62% CL-20/32% μAl_1@5.0%PFPE/6% binder) was 8125 m·s⁻¹, the measured detonation heat was 8049.8 kJ·kg⁻¹, and the energy release efficiency reached 86.10% (measured by detonation heat).

Key words: hexanitrohexaazaisowurtzitane; perfluoropolyether-functionalized micro/nano aluminum; constant-volume combustion; laser ignition; detonation environment

CLC number: TJ55

Document code: A

DOI: 10.11943/CJEM2024230

(责编:高毅)