六硝基六氮杂异伍兹烷(HNIW,CL - 20)是目前已知能够实际应用的能量密度最高的单质炸药之一[1-4],常温常压下HNIW存在α、β、γ和ε四种晶型,受自身分子结构和堆积方式的影响,HNIW在不同环境条件与外界刺激作用下,较易发生晶型转变,从而导致晶体结构稳定性和安全性劣化,降低武器系统的性能可靠性,成为制约其广泛应用与推广的重要原因[5-6]。
因此,对于HNIW在复杂环境下的晶体结构稳定性控制一直是研究的热点问题。早期针对HNIW的晶变行为和控制技术研究主要围绕如何在溶液状态下获得高质量高纯度的ε - HNIW[7-8]。如Jessica等[9-10]研究了不同溶剂条件下HNIW的结晶形貌及晶型纯度的变化情况,分析了形成多晶型的原因。中国工程物理研究院也对HNIW在不同溶液结晶条件下的晶变行为开展了研究[11-13],获得了HNIW在溶液中的晶变规律,提出了利用Ostwald规则和溶剂介导相变解释晶型转变机理。而随后在针对ε - HNIW的应用与性能研究过程中,人们发现ε-HNIW在140 ℃左右的热刺激下就会发生固-固晶变,甚至出现少量热分解。热作用是最常见、最直接的环境加载方式,也是影响HNIW微观结构变化和晶型转变行为最为重要的因素。如Gump等[14]利用同步辐射小角X -射线散射方法证实了ε-HNIW在常压下向γ晶型转变的起始温度为125 ℃,而大于150 ℃就开始出现热分解。Lobbecke等[15]也通过DSC研究了ε→γ相变的温度为160~170 ℃,而γ晶型在大于210 ℃将会发生一定的热分解。而Sheikov等[16]运用FTIR研究HNIW的晶变行为时,发现加热到164 ℃以上,即可发生ε→γ的晶型转变。HNIW这种较为温和的固-固晶变条件使其应用推广变得更为艰难。为了延缓或抑制HNIW的晶变行为,不少研究者尝试利用添加剂或包覆技术对其表界面微观结构进行改善,以期实现吸收热量或转变晶体界面热传递模式的目的,从而提高其热晶变温度,控制晶体结构的稳定性。如Thiboutot等[17]利用拉曼光谱研究了HNIW在液态TNT /ETPE体系中熔铸时的晶型转变行为,发现熔融TNT会溶解部分ε -HNIW并加速相变得到β晶型,说明有些添加剂体系对于HNIW晶变不仅没有起到抑制作用,反而加速了晶变。杨志剑等[18]采用溶剂-热自组装技术得到了TATB包覆HNIW的核壳结构,发现包覆后HNIW的ε→γ相变温度提高了10 ℃左右。此外,徐金江等[19-20]在前期的研究中也利用原位XRD技术研究了HTPB粘结体系中ε-HNIW的热晶变行为,发现具有微溶解性的添加剂将明显促进HNIW的晶型转变。但是,以上研究对于不同种类添加剂对HNIW热晶变的具体影响规律及作用机制还不甚了解,特别是关于HNIW基配方中广泛存在的粘结剂及其它炸药体系的影响方面仍显薄弱,添加剂对HNIW热晶变的诱导机制仍不清楚。
因此,本研究基于原位X-射线粉末衍射(原位XRD)技术系统开展了热刺激作用下17种复合炸药中HNIW晶体的晶型转变行为,根据HNIW的热晶变特征参数将添加剂进行分类,分析不同种类添加剂对HNIW热晶变的影响规律,研究添加剂对HNIW热晶变特征参数将添加剂进行分类,分析不同种类添加剂对HNIW热晶变的影响规律,研究添加剂对HNIW热晶变的诱导或抑制作用机制,以期为HNIW基武器弹药的设计、工艺选择和性能评估、环境适应性与寿命预测提供可借鉴的基础实验数据。
2 实验部分 2.1 试样制备HNIW原料由化工材料研究所提供,以乙酸乙酯为溶剂,石油醚为反溶剂,通过溶剂/反溶剂方法重结晶制得高品质的ε‐HNIW晶体。使用的添加剂包括己二酸二辛酯(DOA)、硝酸脂基化合物(PL‐E,液态)、聚叠氮缩水甘油醚(GAP)、改性聚叠氮缩水甘油醚(GAP‐E)、葵酸葵酯(CAD)、聚氨酯(Estane)、烷烃类混合物(PL ‐ A,液态)、三苯基铋(TPB)、石蜡(Paraf‐ fin)、地蜡(Ozocerite)、乙烯‐醋酸乙烯共聚物(EVA)、氟橡胶(FR)、聚丁二烯(PIB)、丁苯橡胶(SBR)、顺丁橡胶(PBR)、异氟尔酮二异氰酸酯(IPDI)、天然橡胶(NR)。将液态添加剂直接与HNIW晶体混合,对于固态添加剂,先将其溶解然后再与HNIW混合并挥发溶剂,从而获得复合含能材料。HNIW基复合炸药中添加剂的含量为10%。
2.2 HNIW基复合炸药的原位热加载XRD实验使用德国Bruker D8 Advance粉末衍射仪对HNIW基复合炸药进行原位热加载XRD表征,在线扫描获得不同样品的原位XRD谱图,以Cu Kα射线为衍射源(λ=1.54180 Å),采用万特探测器接收数据,光管的电压和电流为40 kV/40 mA,谱图的扫描范围为范围为5°~50°,扫描步长为0.02°/0.1s。
原位控温程序:升温过程,以0.1 ℃ · s-1速率从30 ℃升到185 ℃,在30~110 ℃每20 ℃扫描一次,在120~180 ℃每5 ℃扫描一次,每次扫描前保温2 min。降温过程,以0.5 ℃ · s-1速率降到30 ℃,分别在140,130,90,50,30 ℃时各扫描一次,扫描前保温2 min。
2.3 复合炸药中HNIW晶体的晶型定量计算方法为了准确研究复合炸药中ε - HNIW的晶型转变规律,需要对复合炸药中的HNIW晶体在发生热晶变时的晶变含量进行定量计算,从而获得晶变率随温度的变化情况。由于复合炸药的XRD谱图较为复杂,难以采用内标法、直接对比法等方法进行计算,本研究采用X-射线粉末衍射全谱拟合无标样定量相分析方法[21-22]对复合炸药中HNIW晶体进行晶型的定量分析。首先将样品的XRD谱图与HNIW的标准谱图对比,判断样品中含有的晶型类别,然后以HNIW晶体结构为初始模型,通过Topas软件[23]进行全谱拟合计算获得复合炸药中HNIW晶型含量,拟合收敛因子Rwp控制在10以内,晶型定量计算的误差约在2%[24]。不同晶型HNIW的标准谱图如图 1所示。
![]() |
图 1 不同晶型HNIW的XRD谱图 Fig.1 XRD patterns of γ-HNIW and ε-HNIW |
晶体品质对HNIW热晶变行为有明显影响[25],为保证实验的一致性,不同复合体系均采用相同品质的HNIW晶体。首先将HNIW原料进行重结晶,获得具有较高品质的HNIW晶体。采用XRD表征证实重结晶后的HNIW为ε晶型。利用激光粒度仪测试获得HNIW的粒度分布范围主要在200~500 μm,平均粒径约为379 μm。利用密度梯度法测试获得HNIW晶体的平均密度为2.041 g·cm-3,在密度液中基本分布在一条直线上,说明其密度分布集中。用高效液相色谱测试获得重结晶后HNIW的化学纯度达到99.87%。
基于原位XRD技术对HNIW基复合炸药进行原位热加载实验,获得原位XRD谱图,如图 2所示(由于不同添加剂的谱图变化趋势基本类似,仅列出了HNIW及其与3种典型添加剂混合后的谱图)。从图 2可看出,对于无添加剂的ε - HNIW晶体(图 2a),在135 ℃时开始发生ε→γ热晶变,180 ℃时转化率为93.1%。在135~180 ℃,ε和γ晶型共存。表明HNIW发生热晶变时不需要全部破坏ε晶型就可以产生γ晶型,在一定温度范围内,两种晶型HNIW能够同时存在,这为利用XRD谱图进行两种晶型定量进而研究晶型转变动力学提供了保证。另外,实验发现,热晶变后得到的γ-HNIW在降温时不会回复为ε晶型,这可能与ε→γ晶型转变时所需要克服的活化能垒太高有关。
![]() |
图 2 热加载环境下四种HNIW基复合炸药的原位XRD谱图 Fig.2 In-situ XRD patterns of four kinds of HNIW based composite explosives under the heat loading environment |
与标准谱图(图 1)对比可知,ε -HNIW与添加剂混合后形成的复合炸药在室温下测试时仍然为ε晶型,说明室温下添加剂不会对ε-HNIW的晶型产生影响。随着温度的升高,复合炸药中HNIW的衍射峰略微往左偏移,表明相应的衍射面的面间距随温度升高而增加,这是由于HNIW晶体在热刺激作用下原子振动加剧,导致晶体发生热膨胀并使晶胞参数改变。根据孙杰课题组的研究[26],ε - HNIW晶胞中a、b、c晶轴的热膨胀系数基本相同(αa=4.95×10-5 ℃-1、αb=4.91 × 10-5 ℃-1、αc=4.40 × 10-5 ℃-1),在加热到130 ℃时晶胞体积膨胀约1.35%,表现为近似各向同性的线性可逆正膨胀。随着温度升高,复合炸药中的HNIW在12.94°、13.33°、14.15°处出现新的衍射峰,表明此时已经开始发生ε→γ的热晶变。从晶体堆积结构角度看,在热刺激作用下ε-HNIW晶胞中的分子首先热振动并膨胀,当热振动达到一定程度时,HNIW分子将克服分子间作用力,发生构型翻转(主要是笼型结构上的硝基取向变化)并促使分子重新堆积,从而形成高温稳定的γ晶型。在该热晶变过程中,HNIW仍然为单斜晶系和P21 /n空间群,只是分子构象及分子的相对位置发生改变(图 3),因此,只需要克服较低的能垒即可实现结构演变,这也说明了为什么ε-HNIW晶体在外界刺激作用下容易发生晶型转变。
![]() |
图 3 复合炸药中HNIW发生ε→γ热晶变时晶胞堆积方式变化情况 Fig.3 The packing mode change of HNIW crystals in composite explosives during the heat-induced ε→γ polymorphic transformation |
在热刺激作用下不同复合炸药中的HNIW晶体均会发生从ε→γ的晶型转变,并且热晶变的起始温度、热晶变率均不同。由于不同晶型的晶体密度存在明显差异,热晶变时会在HNIW晶体内部产生热应力,导致晶体破坏并伴随体积膨胀,出现大量的空位和微裂纹(见图 4),使HNIW基的武器弹药安全性降低。
![]() |
图 4 ε-HNIW晶体在热晶变时表观形貌的演变过程 Fig.4 The apparent morphology evolution process of ε-HNIW crystals during the heat-induced ε→γ polymorphic transformation(red arrows represent the diffuse direction of ε→γ phase transition, after phase transition the HNIW trans- parent single crystal change into opaque polycrystal) |
HNIW热晶变是指HNIW及其在复合体系中受到热作用时的晶型转变。HNIW的热晶变规律是指HNIW晶体的晶变率η、晶变速率dη/dT与温度的关系。热晶变特征参数包括晶变起始温度T0、晶变50%时的温度T50、晶变100%的温度T100、以及特定温度下的晶变率η(T)。通过与HNIW标准谱图对比判断复合炸药中HNIW的热晶变温度T0、T50和T100,然后利用Topas软件[23-24]计算复合炸药中HNIW晶体在不同温度作用下的γ晶型含量,从而获得复合炸药中HNIW晶体的ε→γ热晶变特征参数,如表 1所示。
![]() |
表 1 复合炸药中HNIW晶体的ε→γ热晶变特征参数 Tab.1 The characteristic parameters of HNIW under heatinduced ε → γ polymorphic transformation in composite explosives |
将复合炸药中HNIW的热晶变特征参数与单一组分的ε - HNIW对比,根据热晶变起始温度、热晶变50%温度及热晶变速率的不同将HNIW基复合炸药分为三类,如下所示。第一类,易晶变体系:晶变起始温度降低,晶变速率提高; 第二类,中间体系:晶变起始温度提高,晶变速率也提高; 第三类,难晶变体系:晶变起始温度提高,同时晶变速率降低。
根据上述分类,分别将不同体系复合炸药中HNIW的晶变率随温度的变化情况作图,结果如图 5所示。从图 5可以看出,第一类易晶变体系的特点是,与单一组分的HNIW晶体相比,复合炸药中HNIW的起始热晶变温度T0提前,并且在加热到180 ℃之前就已经完全转变为γ晶型,包括已二酸二辛脂(DOA)、硝酸脂基化合物(PL-E)、聚叠氮缩水甘油醚(GAP)、改性段羟基聚丁二烯(GAP - E)、葵酸葵酯(CAD)、聚氨酯(Estane)。从热晶变温度T50来看,第一类添加剂构成的复合炸药在低于146 ℃就可达到50%的热晶变率,比纯的ε-HNIW晶体低18 ℃以上,说明该类添加剂可以明显促使HNIW的热晶变,在配方设计时需要特别关注。除了聚氨酯在常温下为固体状态,其余五种均为液体状态,初步推测该类添加剂可能对HNIW有微量溶解作用,从而诱导晶型转变。
![]() |
图 5 复合炸药中ε-HNIW发生热晶变时γ晶型含量随温度的变化情况 Fig.5 Increasing fraction of the γ form of HNIW as a function of temperature in the ε-HNIW based composite explosives |
第二类中间体系和第三类难晶变体系的特点是,与纯HNIW晶体相比,复合炸药中HNIW的热晶变起始温度T0均明显提高(图 6)。不同的是第二类体系中,随着温度的提升,添加剂会促使HNIW发生热晶变使晶变率50%时的温度T50提前,并且在加热到180 ℃时HNIW就已经完全转变为γ晶型,包括乙烯-醋酸乙烯共聚物(EVA)、三苯基铋(TPB)、烷烃类化体系中HNIW的T0未明显提升,但热晶变速率仍显著降低,表明此类添加剂对HNIW的热晶变有抑制作用,在一定程度上提升了HNIW的晶体结构热稳定性。
![]() |
图 6 根据复合炸药中ε-HNIW的热晶变特征参数得到的添加剂分类 Fig.6 The classification of additives based on the heatinduced polymorphic transformation (PT) characteristic parameters of ε-HNIW in composite explosives |
炸药晶体的固-固晶型转变总是朝着能量降低的方向进行,晶变倾向于选择阻力最小、速度最快的途径,并且可以有不同的终态,但只有最合适结构环境的新相才易于生存下来[27-28]。炸药晶变是内因和外因共同作用的结果。外因是变化的条件,内因是变化的依据,热力学条件反应的是由外因引起的结果,例如外界的热刺激、压力刺激、添加剂诱导、研磨作用、溶剂介导等,均会引起炸药晶变,内因通常是指炸药晶体本身的品质,如缺陷、纯度等。并且晶变是一个由量变到质变的过程,一定的外界条件下,复合炸药体系的总能量可能不变,但微观上,体系内部存在“能量起伏、结构起伏和成分起伏”,当宏观上能检测出相应的变化时,就发生了质变或晶变。从满足热力学条件到晶变开始发生这段时间称为炸药晶变的孕育期,并且存在孕育期是绝对的,但其长短则是相对的,而外界条件改变,包括热刺激温度和添加剂种类,将会改变孕育期。
不同晶型HNIW的热力学稳定性顺序与温度有关,越稳定的晶型其自由能越低。γ与ε-HNIW存在晶型互变温度(TC),高于该温度时γ-HNIW为最稳定晶型,因此当ε-HNIW加热到TC时就会有向γ晶型转变的趋势。在此转变过程中,热量的传输将对晶型转变产生重要的影响。而通常不同种类添加剂的导热系数存在差异。当添加剂对HNIW形成包覆时,将直接影响热量传输,对于不能增加材料导热能力的添加剂,将使得HNIW的热晶变受到一定程度的抑制。例如第三类复合炸药中的氟橡胶等固体添加剂与HNIW混合后形成包覆结构(图 7),这些添加剂不会对HNIW晶体产生溶解但形成的表面包覆层具有一定的隔热作用,因此在热诱导下将影响热量传输到HNIW晶体表面,从而抑制了复合炸药中HNIW的热晶变。
![]() |
图 7 三种HNIW基复合炸药的表观形貌 Fig.7 The apparent morphology of three kinds of HNIW based composite explosives |
从动力学角度看,炸药晶体的固-固晶变与溶液结晶时的晶型转变不同,没有溶剂作为媒介,只能在固态晶相中依靠分子的迁移扩散进行成核和晶体生长,因此需要克服更高的晶型转变活化能垒。例如纯的ε - HNIW晶体需要加热到135 ℃才开始发生热晶变,而如果将ε-HNIW浸入反溶剂(如甲苯、三氯乙烷等)中,加热到100 ℃时HNIW晶体大部分未溶解,但2 h内即可全部转变γ晶型,虽然反溶剂在高温下只是对HNIW起到微溶作用,但部分微溶的HNIW将首先形成γ晶核,进而诱导晶型转变的发生。同理,在复合炸药中,部分含有酯基、硝酸脂基等官能团的添加剂对ε -HNIW晶体有微溶解作用,例如已二酸二辛脂、葵酸葵酯、硝酸脂基化合物、聚叠氮缩水甘油醚等,其中室温下HNIW在100 g的DOA和100 g的PL-E中的溶解度分别约为3.95 g和3.90 g。将1 g的ε-HNIW放入3 g的DOA溶剂中,在100 ℃下持续加热3 h就可以检测到γ-HNIW,表明DOA溶剂对HNIW的微溶解作用诱导其发生晶型转变。虽然第一类复合炸药中使用的添加剂含量较低仅有10%,但包覆在HNIW晶体表面时同样会产生界面微溶层(见图 7),在该微溶层内HNIW只需在较低温度下就可以越过晶变能垒形成γ晶核,进而诱导生长形成γ晶体,称之为界面微溶诱导成核生长机理。该成核生长过程改变了HNIW的晶变路径,从固-固晶变转化为固-液-固晶变,使得晶型转变的活化能垒降低,从而促使ε-HNIW在较低的温度下就可发生热晶变,并且该过程符合Ostwald规则[29]。
综上所述,从热力学和动力学角度解释了复合炸药中ε - HNIW的热晶变行为。其实对于同一种品质的HNIW晶体,其ε→ γ晶型转变时的温度点应该是固定不变的,即不管加入何种添加剂,在达到该临界温度点时必须发生晶型转变,然而实际情况并非如此。因为从动力学角度看,虽然在达到临界点温度时,γ-HNIW变成了最稳定的晶型,但由ε晶型转变为γ晶型还需要越过一定的能垒才能实现,而HNIW晶体所处的复合炸药的化学环境将直接影响着晶变能垒的高低。当外界刺激达到临界温度点时,但由于添加剂与HNIW晶体的作用导致ε→γ晶变的能垒升高或降低,将使得晶变的孕育期变长或缩短,在有限的热晶变时间里将无法观测到晶型转变的发生或快速的完成晶变,从而导致不同复合炸药中HNIW晶体的热晶变行为产生明显差异。此外,不同升温速率也会影响HNIW的热传导速率及受热场作用时间,从而得到不同的起始晶变温度及速率,该作用属于动力学范畴。因此,添加剂对ε-HNIW在热刺激作用下的晶型转变影响过程属于动力学控制过程。
4 结论(1)基于原位XRD技术研究了17种添加剂对ε-HNIW热诱导晶型转变行为的影响,获得了复合炸药中HNIW的热晶变特征参数(包括晶变起始温度T0、晶变50%时的温度T50、晶变100%的温度T100、以及特定温度下的晶变率η(T))及热晶变规律,根据热晶变起始温度及热晶变速率提出了将添加剂分为三类:易晶变体系、中间体系和难晶变体系。
(2)易晶变体系中的添加剂主要是一类含有酯基、硝酸酯基等的液体添加剂,例如已二酸二辛脂、硝酸脂基化合物、端羟基聚丁二烯、葵酸葵酯等,与HNIW混合后,能够在晶体表面产生界面微溶层,使其在较低温度刺激下就可诱导形成γ晶型,从而促使热晶变的发生。
(3)难晶变体系和中间体系的添加剂大部分是高分子材料,对HNIW晶体有一定的包覆作用,能够改变热传导速率,提高HNIW的热晶变起始温度,但当开始热晶变时中间体系的添加剂能够加速HNIW的持续晶变,而难晶变体系的添加剂包括氟橡胶、顺丁橡胶、聚异丁烯、天然橡胶等始终对HNIW的热晶变有较强的抑制作用。该研究对于探索HNIW晶变抑制方法具有重要价值,也是准确评价HNIW基复合炸药在长期贮存时结构稳定性的必要途径。
[1] |
Bennion J C, Chowdhury N, Kampf J W, et al. Hydrogen peroxide solvates of 2, 4, 6, 8, 10, 12‐ Hexanitro‐2, 4, 6, 8, 10, 12‐ hexaazaisowurtzitane[J].
Angewandte Chemie International Edition, 2016, 128(42): 13312-13315. |
[2] |
Zhang C, Xue X, Cao Y, et al. Toward low‐sensitive and high‐ energetic co‐crystal Ⅱ:structural, electronic and energetic features of HNIW polymorphs and the observed HNIW‐based energetic‐energetic co‐crystals[J].
Cryst Eng Comm, 2014, 16(26): 5905-5916. DOI:10.1039/c4ce00584h |
[3] |
Yan Q, Zeman S, Svoboda R, et al. The effect of crystal structure on the thermal reactivity of HNIW and its C4‐bonded ex‐ plosives[J].
Journal of Thermal Analysis and Calorimetry, 2013, 112(2): 837-849. DOI:10.1007/s10973-012-2629-3 |
[4] |
William GP, Stephen MW, David MW, et al. Recent trends in research on energetic materials at Cambridge[J].
Central European Journal of Energetic Materials, 2009, 6(1): 67-102. |
[5] |
Gołofit T, Zys'k K. Thermal decomposition properties and compatibility of HNIW with binders HTPB, PBAN, GAP and polyNIMMO[J].
Journal of Thermal Analysis and Calorimetry, 2015, 119(3): 1931-1939. DOI:10.1007/s10973-015-4418-2 |
[6] |
Wang J, An C, Li G, et al. Preparation and performances of castable HTPB/HNIW booster explosives[J].
Propellants, Explosives, Pyrotechnics, 2011, 36(1): 34-41. |
[7] |
Mrinal G, Venkatesan V, Snehal M, et al. Probing crystal growth of ε‐ and β‐HNIW polymorphs via metastable phase transition using microscopy and vibrational spectroscopy[J].
Crystal Growth & Design, 2014, 14(10): 5053-5063. |
[8] |
徐金江, 孙杰, 周克恩, 等. CL‐20重结晶过程中的晶型转变研究进展[J].
含能材料, 2012, 20(2): 248-255. XU Jin‐jiang, SUN Jie, ZHOU Ke‐en, et al. Review on polymorphic transformation in CL‐20 recrystallization[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012, 20(2): 248-255. |
[9] |
Jessica H, Victor G, Jennifer A. Using solvent effects to guide the design of a HNIW cocrystal[J].
Cryst Eng Comm, 2015, 17(7): 1564-1568. DOI:10.1039/C4CE02285H |
[10] |
Jessica H, Jennifer A. Solvent effects on the growth morphology and phase purity of HNIW[J].
Crystal Growth & Design, 2014, 14(4): 1642-1649. |
[11] |
Xu J, Tian Y, Sun J, et al. Polymorphism in hexanitrohexaazai‐ sowurtzitane crystallized from solution[J].
Journal of Crystal Growth, 2012, 354(1): 13-19. DOI:10.1016/j.jcrysgro.2012.05.036 |
[12] |
徐金江. HNIW重结晶过程中的晶型转变研究[D]. 绵阳: 中国工程物理研究院, 2012.
XU Jin‐jiang. Polymorphic transformation of CL ‐ 20 in solution recrystallization[D]. Mianyang: Chinese Academy of Engineering Physics (CAEP), 2012. |
[13] |
Wei X, Xu J, Li H, et al. Comparative Study of experiments and calculations on the polymorphisms of HNIW precipitated by solvent/antisolvent method[J].
Journal of Physical Chemistry C, 2016, 120(9): 5042-5051. DOI:10.1021/acs.jpcc.6b00304 |
[14] |
Gump JC, Stoltz CA, Peiris SM, et al. Phase stability of epsi‐ lon and gamma HNIW at high‐pressure and temperature[C] // Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Waikoloa, Unit‐ ed States, 2007, 955(127): 127-132.
|
[15] |
Lobbecke S, Bohn MA, Pfeil A, et al. Thermal behavior and stability of HNIW[C] // Proceedings of the29th International Annual Conference of ICT, Karlrsuhe, Federal Republic of Germany, 1998: 368-376.
|
[16] |
Sheikov Y V, Andrievskikh L A, Vasipenko V G, et al. On sensitivity of HE CL‐20[J].
Chinese Journal of Energetic Materials (Hanneng Cailiao), 2004, 12(12): 16-20. |
[17] |
Thiboutot S, Brousseau P, Ampleman G, et al. Potential use of HNIW in TNT / ETPE ‐ based melt cast formulation[J].
Propellants, Explosives, Pyrotechnics, 2008, 33(2): 103-108. DOI:10.1002/(ISSN)1521-4087 |
[18] |
Yang Z, Ding L, Wu P, et al. Fabrication of RDX, HMX and HNIW based microcapsules via in situ polymerization of melamine‐formaldehyde resins with reduced sensitivity[J].
Chemical Engineering Journal, 2015, 268(1): 60-66. |
[19] |
徐金江, 蒲柳, 刘渝, 等. HTPB粘结体系中ε‐CL‐20的晶型转变规律[J].
含能材料, 2015, 23(2): 113-119. XU Jin‐jiang, PU Liu, LIU Yu, et al. Polymorphic transformation of ε ‐ CL ‐ 20 in different HTPB ‐ based composite systems[J]. Chinese Journal of Energetic Materials (Hanneng Cail- iao), 2015, 23(2): 113-119. DOI:10.11943/j.issn.1006-9941.2015.02.002 |
[20] |
Zhang P, Xu J, Jiao Q, et al. Effect of addictives on polymorphic transition of ε‐HNIW in castable systems[J].
Journal of Thermal Analysis and Calorimetry, 2014, 117(2): 1001-1008. DOI:10.1007/s10973-014-3798-z |
[21] |
Mittemeijer E J, Welzel U.
Modern Diffraction Methods[M]. John Wiley & Sons, 2013: 285-318.
|
[22] |
Young R A.
The Rietveld Method[M]. London: Oxford University Press, 2002: 111-131.
|
[23] |
TOPAS V3. 0: General Profile and Structure Analysis Software for Powder Diffraction Data[CP], Bruker AXS GmbH, Karl‐ sruhe, 2000.
|
[24] |
Xue C, Sun J, Kang B, et al. The β→δ phase transition and thermal expansion of Octahydro‐1, 3, 5, 7‐tetranitro‐1, 3, 5, 7‐ tetrazocine[J].
Propellants, Explosives, Pyrotechnics, 2010, 35(4): 333-338. DOI:10.1002/prep.200900036 |
[25] |
Liu Y, Li S, Wang Z, et al. Thermally Induced Polymorphic Transformation of Hexanitrohexaazaisowurtzitane(HNIW)In‐ vestigated by in‐situ X‐ray powder diffraction[J].
Central Euro- pean Journal of Energetic Materials, 2016, 13(4): 1023-1037. DOI:10.22211/cejem/62349 |
[26] |
Pu L, Xu J, Sun J, et al. Investigation on the Thermal Expansion of Four Polymorphs of Crystalline CL‐20[J].
Journal of En- ergetic Materials, 2015, 34(2): 205-215. |
[27] |
张贵锋, 黄昊.
固态相变原理及应用[M]. 北京: 冶金工业出版社, 2011: 1-24.
ZHANG Gui‐feng, HUANG Hao. Principle and application of solid phase transformation[M]. Beijing: Metallurgical Industry Press, 2011: 1-24. |
[28] |
Vittal J J, Hong S Q. Engineering solid state structural transformations of metalcomplexes[J].
Coordination Chemistry Reviews, 2017, 342(13): 1-18. |
[29] |
Black J F B, Cardew P T, Cruz‐Cabeza A J, et al. Crystal nucleation and growth in a polymorphic system:Ostwald's rule, p‐aminobenzoic acid and nucleation transition states[J].
Cryst Eng Comm, 2018, 20(6): 768-776. DOI:10.1039/C7CE01960B |
The effects of additives on the heat‐induced polymorphic transformation(PT)of HNIW in composite explosives were investigated by means of in‐situ XRD.