文章快速检索     高级检索
  含能材料  2013, Vol. 21 Issue (5): 578-582.  DOI: 10.3969/j.issn.1006-9941.2013.05.004
0

引用本文  

佟文超, 王士卫, 武碧栋, 杨利, 张同来. 新型绿色起爆药硝氨基四唑钙(Ⅱ)五水化合物的晶体结构[J]. 含能材料, 2013, 21(5): 578-582. DOI: 10.3969/j.issn.1006-9941.2013.05.004.
TONG Wen-chao, WANG Shi-wei, WU Bi-dong, YANG Li, ZHANG Tong-lai. Crystal Structure of a Novel Green Initiating Explosive Calcium Nitriminotetrazolate Pentahydrate[J]. Chinese Journal of Energetic Materials, 2013, 21(5): 578-582. DOI: 10.3969/j.issn.1006-9941.2013.05.004.

基金项目

爆炸科学与技术国家重点实验室基金(No.QNKT12-02和ZDKT10-01b),应用物理化学重点实验室基金(No.9140C3703051105和9140C370303120C37142)

作者简介

佟文超(1987-),男,博士研究生,主要从事研究。e-mail: wenchao061@126.com

通信联系人

杨利(1972-),女,教授,主要从事含能材料的基础理论与应用研究。e-mail: yanglibit@bit.edu.cn

文章历史

收稿日期:2013-05-06
修回日期:2013-06-05
新型绿色起爆药硝氨基四唑钙(Ⅱ)五水化合物的晶体结构
佟文超, 王士卫, 武碧栋, 杨利, 张同来     
北京理工大学爆炸科学与技术国家重点实验室, 北京 100081
摘要:用缓慢蒸发法制备了新型绿色起爆药硝氨基四唑钙(Ⅱ)五水化合物[Ca(NATZ)(H2O)5]的单晶。用X射线衍射仪表征其单晶结构。该晶体属三斜晶系,空间群为P1,晶胞参数为: a=0.64803(13) nm,b=0.74328(16) nm,c=1.0348(2) nm,α=74.482(8)°,β=72.487(9)°,γ=74.755(9)°,V=0.44888(16) nm3Z=4,Dc=2.050 g·cm-3。根据Ca(NATZ)(H2O)5的结构特征研究了它的分解机理。运用Gaussian 03程序,用HF6-311G和B3LYP6-311G方法对Ca(NATZ)(H2O)5进行了全优化几何构型和轨道能量分析。所得结果与前人实验研究结果一致:热稳定性差,且热分解失重主要为两个阶段。
关键词物理化学     起爆药     五水合硝氨基四唑钙(Ⅱ)     晶体结构     理论研究    
Crystal Structure of a Novel Green Initiating Explosive Calcium Nitriminotetrazolate Pentahydrate
TONG Wen-chao , WANG Shi-wei , WU Bi-dong , YANG Li , ZHANG Tong-lai     
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract: The single crystal of calcium nitriminotetrazolate pentahydrate [Ca(NATZ)(H2O)5], a novel green initiating explosive was prepared by slow evaporation method. Its structure was characterized by a X-ray diffractometer. The crystal is triclinic, space group P1 with crystal parameters of a=0.64803(13)nm, b=0.74328(16) nm, c=1.0348(2) nm, α=74.482(8)°, β=72.487(9)°, γ=74.755(9)°, V=0.44888(16) nm3, Z=4, Dc=2.050 g·cm-3. On the basis of the structure characteristics of Ca(NATZ)(H2O)5, its decomposition mechanism was studied. The full optimized geometry and orbital energy analysis of Ca(NATZ)(H2O)5 were performed with the HF6-311G and B3LYP-6-311G methods using the Gaussian 03 program. Its thermal stability was studied. Rusults show there are two steps in its thermal decomposition which is agreed with expriments.
Key words: physical chemistry    initiating explosive    calcium nitriminotetrazolate pentahydrate    crystal structure    theoretical investigation    
1 引言

随着起爆药行业的不断发展,近年来推出了不少新型的起爆药品种,如叠氮肼镍(NHN)、高氯酸三碳酰肼合镉(GTG)、高氯酸三碳酰肼合锌(GTX)等,已被广泛应用于民用爆破器材的工业系列雷管中。目前,环保绿色起爆药仍是国内外学者不断研究的方向[1-3]

Zhilin等先后报道了两种高能含能化合物高氯酸·四氨·双(5-硝基四唑)合钴(Ⅲ)[4]和高氯酸·四氨·双(1-甲基-5-氨基四唑)合钴(Ⅲ)[5]。Klapötke等合成了多种双四唑胺类和铜的配合物[6-7],其于2009年报道合成了新型含能配合物——五水合硝氨基四唑钙(Ⅱ)[8],经烘干后去掉结晶水,对其感度和起爆性能做了测试,0.5 g无水硝氨基四唑钙(Ⅱ)可成功起爆2.0 g六硝基茋(HNS),认为该药是一种新型的可代替氮化铅的绿色起爆药,适合大规模生产,最具应用价值。

虽然Klapötke等对硝氨基四唑钙(Ⅱ)的合成方法和晶体结构以及热力学性质等进行了介绍,但是未对其晶体结构进行详细描述与分析。本研究合成了五水合硝氨基四唑钙(Ⅱ)(Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$),制备了五水合硝氨基四唑钙的单晶,详细报道了它的晶体结构数据,并根据其结构特征研究了Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的分解机理,同时运用量化计算的方法分析了它的稳定性,为该化合物的进一步应用提供基础理论。

2 实验部分 2.1 试剂

氢氧化钙为市售分析纯;5-硝氨基四唑按照文献方法自制[9]

2.2 $\mathbf{Ca}$($\mathbf{NATZ}$)($\mathbf{H}_{\boldsymbol{2}}\mathbf{O}$)$_{\boldsymbol{5}}$的制备

称量1.30 g(0.01 mol)5-硝氨基四唑溶于10 mL蒸馏水中作为底液加入反应器。将0.74 g(0.01 mol)氢氧化钙逐滴分批加入到5-硝氨基四唑的溶液中。在恒温70 ℃的油浴条件下搅拌反应1 h。静置、过滤,得到的白色物质在热水中重结晶,过滤,乙醇洗涤得产物。

2.3 单晶的培养与结构测定

将母液置于80 mL烧杯中静置,缓慢蒸发溶液,得到无色Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$晶体。

选取尺寸为0.40 mm×0.40 mm×0.40 mm的单晶,置于Rigaku AFC-10 /Saturn 724$^{+}\text{CCD}$面探X射线单晶衍射仪上,在103(2) K下,用Mo $\text{K}_{α}$射线($λ$=0.071073 nm),采用Multi-scan方式,$θ$为2.90°~30.02°范围内进行扫描,共收集了4870个衍射点,其中独立衍射点2541个,可观察衍射点2258个。解析之前对所有的衍射点进行$L_{\text{p}}$因子和多次扫描吸收校正。主要原子坐标用SHELXS-97 (Sheldrick,1997)程序由直接法求得,其它非氢原子坐标由差值Fourier合成法得到。用SHELXL-97(Sheldrick,1997)程序选用61个各向异性参数,由全矩阵最小二乘法对非氢原子进行结构优化。所有氢原子均为理论加氢,利用几何参数对氢原子坐标进行结构优化。分子结构用SHELXS-97程序[10]由直接法求得,在SHELXL-97程序[11]中用基于$\text{F}^{2}$的全矩阵最小二乘法进行精修。

2.4 量子化学计算

选取Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$分子作为初始模型, 运用Gaussian 03程序,用HF/6-311G,B3LYP/6-311G两种方法对所选分子体系进行几何全优化和频率计算。计算中所有收敛精度均取程序设定的缺省值。

3 结果与讨论 3.1 $\mathbf{Ca}$($\mathbf{NATZ}$)($\mathbf{H}_{\boldsymbol{2}}\mathbf{O}$)$_{\boldsymbol{5}}$的晶体结构描述

Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的主要晶体学数据列于表 1。Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的分子结构及堆积图分别见图 1图 2。主要键长、键角与扭转角数据列于表 2~表 4

表 1 Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的晶体学参数和结构测定参数 Tab.1 Crystallographic paramerers for Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$
图 1 Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的分子结构图 Fig.1 Molecular structure for Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$
图 2 从a轴、b轴和c轴观察到的Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的晶胞堆积图 Fig.2 Packing diagram of Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$ viewed along the $a$-axis, $b$-axis and $c$-axis
表 2 Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的主要键长 Tab.2 Selected bond lengths for Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$
表 3 Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的主要键角 Tab.3 Selected bond angle for Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$
表 4 Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$分子中键的扭转角 Tab.4 Torsion angles for Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$
3.2 晶体结构分析与讨论

(1) 由图 1可以看出,每个最小不对称结构单元中含有1个中心$\text{Ca}^{2+}$,1个NATZ分子和6个与$\text{Ca}^{2+}$配位的水分子。$\text{Ca}^{2+}$分别与NATZ分子中四唑环上1位上的N、NATZ分子中硝氨基上的一个O原子以及6个$\text{H}_{2}\text{O}$分子中的O原子形成八配位十二面体结构。同时由于$\text{Ca}^{2+}$的3$d^{10}$构型不会发生$d$-$d$跃迁,这与所得晶体为无色的事实相符。

(2) $\text{NATZ}^{-}$阴离子中O(2)—N(6)[1.2887(17)],N(5)—C(1)[1.3901(19)]和N(2)—N(3)[1.3136(19)]的键长比5-NATZ分子中O(2)—N(6)(1.2344),N(5)—C(1)(1.3405)和N(2)—N(3)(1.2778)的键长稍长, 而N(3)—N(4)[1.3389(18)]和N(5)—N(6)[1.2767(19)]的键长要比5-NATZ分子中N(4)—N(3)(1.3521)和N(5)—N(6)(1.3626)的键长要短,这是由于5-硝氨基四唑分子中存在$\text{π}$电子的离域现象。

(3) 图 2为配合物晶体的晶胞堆积图,从图中可以看出,分子中配位键和分子间氢键的共同作用使得Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$以高聚形态存在,形成较稳定的三维网状结构。

(4) 从Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的分子结构图(图 1)可以看出,有4分子水中的O与$\text{Ca}^{2+}$$μ$1配位,1分子水中的O与$\text{Ca}^{2+}$$μ$2配位,使得这一分子的水与$\text{Ca}^{2+}$的配位更加牢固。另外,Ca(1)—O(1)[2.4113(13)]和Ca(1)—N(1)[2.4892(14)]的键长相对于Ca(1)—O(3)[2.5736(13)]的键长要短,键合较强,说明$\text{Ca}^{2+}$$\text{NATZ}^{-}$阴离子中的N(1)和O(1)形成的六元环更加牢固。由此可以推断Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的热分解失重过程为,第一阶段先分解失去四分子的水,第二阶段再失去一分子的水,这与文献[8]报道的实验结果是一致的。

3.3 分子总能量及前线轨道能量分析

运用HF和B3LYP两种方法对Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$分子进行了几何全优化和频率计算。两种计算方法对Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$进行几何优化所得的键长、键角与测定结果比较,B3LYP的计算结果与实验值非常接近,表明计算结果可信,而HF与实验值存在较大偏差(大于5%),计算结果不可靠。根据B3LYP方法计算结果,该体系共有492个分子轨道(MO),其中134个为占据轨道。由计算得到的分子总能量、前线轨道能量($E_{\text{HOMO}}$$E_{\text{LUMO}}$)和能差分别为-3153.70051731, -0.24522,-0.07742和0.16780Hartree。HOMO轨道和LUMO轨道如图 3所示。Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的最高占据轨道(HOMO)主要由5-NATZ分子中原子的2$p_{\text{z}}$轨道构成,最低空轨道(LUMO)主要分布在5-NATZ的除N(3)外的原子的2$p_{\text{z}}$轨道,且由前线轨道能级差$\text{Δ}E_{\text{L}-\text{H}}$(0.16780 Hartree)较小可知,Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$分子的配位稳定性较差,因此该分子在72 ℃开始失水,150 ℃脱去5分子水,得到Ca(NATZ)[8]

图 3 Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$的HOMO(左)和LUMO(右)轨道 Fig.3 HOMOand LUMO of Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$
4 结论

合成了新型绿色起爆药五水合硝氨基四唑钙(Ⅱ)[Ca(NATZ)($\text{H}_{2}\text{O}$)$_{5}$],制备了五水合硝氨基四唑钙的单晶,详细报道了它的晶体结构数据,该晶体属三斜晶系,空间群为$P\bar{1}$,晶胞参数为:$a$=0.64803(13) nm,$b$=0.74328(16) nm,$c$=1.0348(2) nm,$α$=74.482(8)°,$β$=72.487(9)°,$γ$=74.755(9)°,$V$=0.44888(16) $\text{nm}^{3}$$Z$=4,$D_{c}$=2.050 g·$\text{cm}^{-3}$。运用量化计算对其进行了结构优化分析,所得结果与前人实验研究结果一致:热稳定性差,且热功率失重元要为两个阶段。

参考文献
[1]
WU Bi-dong, ZHANG Jian-guo, ZHANG Tong-lai, et al. Two environmentally friendly energetic compounds, [Mn(AZT)4(H2O)2](PA)2·4H2O and [Co(AZT)2(H2O)4](PA)2, based on 3-azido-1, 2, 4-triazole (AZT) and picrate(PA)[J]. Eur J Inorg Chem, 2012: 1261-1268.
[2]
Mehta N, Oyler K D., Cheng G. Green replacements for lead-based materials and safe synthesis and characterization of primary explosives. [C]∥IPSUSA Seminars, 38th Inc. Proceedings of the International Pyrotechnics Seminar, 2012: 433-443.
[3]
ZHU Shun-Guan, SUN Yan-ling, ZHANG Lin, et al. A new green primary explosive: zinc 5, 5′-azotetrazole. [C]∥IPSUSA Seminars, 38th Inc. Proceedings of the International Pyrotechnics Seminar, 2012: 696-704.
[4]
Zhilin A Y, Ilyushin M A, Tselinskii I V, et al. Synthesis of a high-energy-capacity compound, tetrammine-cis-bis(nitro-2H-tetrazolato-N2)cobalt(Ⅲ) perchlorate[J]. Russian Journal of Applied Chemistry, 2001, 74: 96-99.
[5]
Zhilin A Y, Ilyushin M A, Tselinskii I V, et al. Synthesis and properties of tetraamminebis (1-methyl-5-aminotetrazole-N3, N4) cobalt(Ⅲ) perchlorate[J]. Russian Journal of Applied Chemistry, 2002, 75: 1849-1851. DOI:10.1023/A:1022230708059
[6]
Klapötke T M, Meyer P, Polborn K, et al. New Trends in Research of Energetic Materials. [C]∥ Proceedings of the Seminar, 9th, Pardubice, Czech Republic, 2006: 641-651.
[7]
Klapötke T M, Meyer P, Polborn K, et al. [C]∥37th International Annual Conference of ICT, Karlsruhe, Federal Republic of Germany, 2006: 134/1-134/14.
[8]
Klapötke T M, Stierstorfer J. A green replacement for lead azide: calcium 5-nitriminotetrazolate[C]∥New Trends in Research of Energetic Materials, Czech Republic, 2009: 825-831.
[9]
庞思平, 李玉川. 5-硝氨基四唑的合成. [C]∥2008年火炸药学术研讨会论文集. 北京: 北京理工大学, 2008: 46-49.
PANG Si-ping, LI Yu-chuan. The Synthesise of 5-Nitroaminotetrazole. [C]∥Proceedings of the 2008 Explosives & Propellants Seminar. Beijing Institute of Technology, Beijing, 2008: 46-49.
[10]
Sheldrick G M. SHELXS-97, Program for the Refining of Crystal Structure[CP]. University of Göttingen, Germany, 1997.
[11]
Sheldrick G M. SHELXL-97, Program for the Solution of Crystal Structure[CP]. University of Göttingen, Germany, 1997.
图文摘要

The structure of calcium nitriminotetrazolate pentahydrate [Ca(NATZ)(H2O)5] was determined by X-ray single crystal diffraction. Theoretical investigation was carried out by HF/6-311g and B3LYP/6-311g methods. This coordination compound has lower thermal stability.